Conics: Part 2: Ellipses and Hyperbolas

Conics (circles, ellipses, parabolas, and hyperbolas) involves a set of curves that are formed by intersecting a plane and a double-napped right cone (probably too much information!). But in case you are interested, there are four curves that can be formed, and all are used in applications of math and science:

In the Conics section, we will talk about each type of curve, how to recognize and graph them, and then go over some common applications. Always draw pictures first when working with Conics problems!

Table of Conics

Before we go into depth with each conic, here are the Conic Section Equations. Note that you may want to go through the rest of this section before coming back to this table, since it may be a little overwhelming at this point!

CONIC

Circle

Center: $ \left( {h,\,k} \right)$

Parabola

Vertex: $ \left( {h,\,k} \right)$

Ellipse

Center: $ \left( {h,\,k} \right)$

$ a>b$

Hyperbola

Center: $ \left( {h,\,k} \right)$

$ {{a}^{2}}$ before negative sign

HORIZONTAL

$ \displaystyle \begin{array}{c}{{\left( {x-h} \right)}^{2}}+{{\left( {y-k} \right)}^{2}}\\={{r}^{2}}\\\text{Point}\left( {h,k} \right)\text{is center of circle}\end{array}$

$ \displaystyle x=\frac{1}{{4p}}{{\left( {y-k} \right)}^{2}}+h$

or

$ \displaystyle x-h=\frac{1}{{4p}}{{\left( {y-k} \right)}^{2}}$

or

$ 4p\left( {x-h} \right)={{\left( {y-k} \right)}^{2}}$

Example has positive coefficient

$ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$

$ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$

Asymptotes:

$ \displaystyle y-k=\pm \frac{b}{a}\left( {x-h} \right)$

VERTICAL

No Change

$ \displaystyle y=\frac{1}{{4p}}{{\left( {x-h} \right)}^{2}}+k$

or

$ \displaystyle y-k=\frac{1}{{4p}}{{\left( {x-h} \right)}^{2}}$

 or

$ 4p\left( {y-k} \right)={{\left( {x-h} \right)}^{2}}$

Example has positive coefficient

$ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1$

$ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1$

Asymptotes:

$ \displaystyle y-k=\pm \frac{a}{b}\left( {x-h} \right)$

Other

Information

To get $ y$:

$ \begin{array}{c}y=\\\,\,\pm \sqrt{{{{r}^{2}}-{{{\left( {x-h} \right)}}^{2}}}}\\+k\end{array}$

Focal length: $ p$

Focal Width: $ 4p$

Negative Coefficients: Flip parabola

$ {{c}^{2}}={{a}^{2}}-{{b}^{2}}$

Length of Major Axis: $ 2a$

Length of Minor Axis: $ 2b$

$ {{c}^{2}}={{a}^{2}}+{{b}^{2}}$

Length of Transverse Axis: $ 2a$

Length of Conjugate Axis: $ 2b$

Ellipses

An ellipse sort of looks like an oval or a football, and is the set of points whose distances from two fixed points (called the foci) inside the ellipse is constant: $ {{d}_{1}}+{{d}_{2}}=2a$. The distance $ 2a$ is called the constant sum or focal constant, and $ a$ is the distance between the center of the ellipse to a vertex (you usually don’t have to worry about the $ {{d}_{1}}$ and $ {{d}_{2}}$); thus, the constant sum is the distance between the vertices. Can you see this in the drawing? (Lay the two distances down flat.)

$ a$ (the length of the center to the vertices) is always bigger than $ b$ (the length of the center to the co-vertices).

The equation of a horizontal ellipse that is centered on the origin $ \left( {0,0} \right)$ is $ \displaystyle \frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1$ (what’s under the $ x$ is larger than what’s under the $ y$). The equation of a transformed horizontal ellipse with center $ (h,k)$ is $ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$. For vertical ellipses, see the table below.

The length of the longest axis (called the major axis) is always $ 2a$, and this is along the $ x$-axis for a horizontal ellipse. Again, the distance from the center of the ellipse to a vertex is $ a$, so the vertices are at $ \left( \pm a,0 \right)$. The length of the smaller axis (called the minor axis or) is $ 2b$, and this is along the $ y$-axis for a horizontal ellipse. Again, the distance from the center of the ellipse to a co-vertex is $ b$so the co-vertices are at $ \left( 0,\pm b \right)$.

The focuses or foci always lie inside the ellipse on the major axis, and the distance from the center to a focus is $ c$. The foci are at $ \left( \pm c,0 \right)$, and it turns out that $ {{a}^{2}}-{{b}^{2}}={{c}^{2}}$.

Note that a circle happens when $ a$ and $ b$ are the same in an ellipse, so a circle is a special type of ellipse, but for all practical purposes, circles are different than ellipses. Sometimes you will be asked to get the eccentricity of an ellipse $ \displaystyle \frac{c}{a}$, which is a measure of how close to a circle the ellipse is; when it is a circle, the eccentricity is 0. Also, the area of an ellipse is $ \pi ab$.

Note also that the focal width (focal chord, or focal rectum) of an ellipse is $ \displaystyle \frac{{2{{b}^{2}}}}{a}$; this the distance perpendicular to the major axis that goes through the focus.

Here are the two different “directions” of ellipses and the generalized equations for each:

Horizontal Ellipse Vertical Ellipse

 At $ \displaystyle \left( {0,0} \right):\,\,\,\,\frac{{{{x}^{2}}}}{{{{a}^{2}}}}+\frac{{{{y}^{2}}}}{{{{b}^{2}}}}=1$

General:$ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1;\,\,\,\,\,a>b$

$ {{a}^{2}}-{{b}^{2}}={{c}^{2}}$

Center: $ \left( {h,k} \right)$     Foci: $ \left( {h\pm c,k} \right)$

Vertices: $ \left( {h\pm a,k} \right)$     Co-Vertices: $ \left( {h,k\pm b} \right)$ 

At $ \displaystyle \left( {0,0} \right):\,\,\,\,\frac{{{{x}^{2}}}}{{{{b}^{2}}}}+\frac{{{{y}^{2}}}}{{{{a}^{2}}}}=1$

General: $ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1;\,\,\,\,\,a>b$

$ {{a}^{2}}-{{b}^{2}}={{c}^{2}}$

Center: $ \left( {h,k} \right)$      Foci: $ \left( {h,k\pm c} \right)$

Vertices: $ \displaystyle \left( {h,k\pm a} \right)$     Co-Vertices: $ \left( {h\pm b,k} \right)$  

Notes:  $ a$ is always greater than $ b$$ {{a}^{2}}-{{b}^{2}}={{c}^{2}}$;  Major Axis Length $ =2a$;  Minor Axis Length $ =2b$;  Focal Width $ \displaystyle =\frac{{2{{b}^{2}}}}{a}$

You also may have to complete the square to be able to graph an ellipse, like we did here for a circle. (And since you always have to have a “1” after the equal sign, you may have to divide all terms by the constant on the right, if it isn’t “1”). Let’s put it all together and graph some ellipses:

Ellipse Problem and Graph Math/Notes

Identify the vertices, co-vertices, foci, and domain and range, for the following ellipse, and then graph: $ 9{{x}^{2}}+49{{y}^{2}}=441$.

Domain: $ \left[ {-7,\,7} \right]$    Range: $ \left[ {-3,\,3} \right]$

We first need to get our equation into the form of an ellipse by dividing all terms by 441: $ \displaystyle \frac{{9{{x}^{2}}}}{{441}}+\frac{{49{{y}^{2}}}}{{441}}=\frac{{441}}{{441}}$, or $ \displaystyle \frac{{{{x}^{2}}}}{{49}}+\frac{{{{y}^{2}}}}{9}=1$.  We will use the equation $ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$, since $ 49>9$ (horizontal ellipse).

 

This would make $ {{a}^{2}}=49$, so $ a=7$. Since the ellipse’s center is $ (0,0)$, the vertices are $ (-7,0)$ and $ (7,0)$. $ {{b}^{2}}=9$, so $ b=3$; the co-vertices are $ (0,-3)$ and $ (0,3)$.

 

Now let’s find the foci: $ {{c}^{2}}={{a}^{2}}-{{b}^{2}}=49-9=40$. $ c=\sqrt{{40}}\text{ }\left( {\text{or }2\sqrt{{10}}} \right)$, and the foci are $ \displaystyle \left( {\pm \sqrt{{40}},0} \right)$. These can be difficult to graph, but just estimate $ \sqrt{{40}}$ to be close to 6.

 

Notice that the vertices and foci lie along the horizontal line $ y=0$. The length of the major axis is $ 2a=14$ and the length of the minor axis is $ 2b=6$.

Identify the vertices, co-vertices, foci, and domain and range, for the following ellipse, and then graph: $ \displaystyle \frac{{{{{\left( {x+3} \right)}}^{2}}}}{4}+\frac{{{{{\left( {y-2} \right)}}^{2}}}}{{36}}=1$.

Domain: $ \left[ {-5,-1} \right]$    Range: $ \left[ {-4,\,\,8} \right]$

We will use equation: $ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1$, since $ 36>4$ (vertical ellipse). We see that the center of the ellipse is at $ (-3,2)$, so we can first plot that point.

 

$ {{a}^{2}}=36$, so $ a=6$. Since the center is $ (–3 ,2)$, the vertices are $ (-3,2-6)$ and $ (-3,2+6)$, or $ (-3,-4)$ and $ (-3,8)$. $ {{b}^{2}}=4$, so $ b=2$; the co-vertices are $ (-3-2,2)$ and $ (-3+2,2)$ or $ (-5,2)$ and $ (-1,2)$.

 

Now let’s find the foci: $ {{c}^{2}}={{a}^{2}}-{{b}^{2}}=36-4=32$. $ c=\sqrt{{32}}\text{ }\left( {\text{or }4\sqrt{2}} \right)$, and the foci are $ \left( {-3,2\pm \sqrt{{32}}} \right)$. These can be difficult to graph, but just estimate the point: for example, $ 2+\sqrt{{32}}$ is about $ 2+5.5$, or about 7.5.

 

Notice that the vertices and foci are along the vertical line $ x=-3$. The length of the major axis is $ 2a=12$ and the length of the minor axis is $ 2b=4$.

Here’s one where you have to Complete the Square to be able to graph the ellipse:

Ellipse Problem and Graph Math/Notes

Identify the verticesco-verticesfoci and domain and range, for the following ellipse; then graph: $ 4{{x}^{2}}+{{y}^{2}}+24x+2y=-33$.

 

Domain: $ \left[ {-4,-2} \right]$    Range: $ \left[ {-3,1} \right]$

$ \displaystyle \begin{array}{c}4{{x}^{2}}+24x+{{y}^{2}}+2y=-33\\4\left( {{{x}^{2}}+6x} \right)+{{y}^{2}}+2y=-33\\4\left( {{{x}^{2}}+6x+\,\,\underline{{\,\,\,\,\,\,}}\,} \right)+\left( {{{y}^{2}}+2y+\,\,\underline{{\,\,\,\,\,\,}}\,} \right)=-33+\,\,\underline{{\,\,\,\,\,\,}}\\4\left( {{{x}^{2}}+6x+\color{#2E8B57}{{\underline{{{{{\left( 3 \right)}}^{2}}}}}}} \right)+\left( {{{y}^{2}}+2y+\color{#2E8B57}{{\underline{{{{{\left( 1 \right)}}^{2}}}}}}\,} \right)=-33+\color{#2E8B57}{{\underline{{4{{{\left( 3 \right)}}^{2}}+{{{\left( 1 \right)}}^{2}}}}}}\\4{{\left( {x+\underline{3}} \right)}^{2}}+{{\left( {y+\underline{1}} \right)}^{2}}=-33+36+1\\4{{\left( {x+3} \right)}^{2}}+{{\left( {y+1} \right)}^{2}}=4\end{array}$

$ \displaystyle \frac{{{{{\left( {x+3} \right)}}^{2}}}}{1}+\frac{{{{{\left( {y+1} \right)}}^{2}}}}{4}=1$

We need to first complete the square so we can get the equation in ellipse form. Put all the $ x$’s and $ y$’s together with the constant term on the other side. There can’t be a number (coefficient) before the $ {{x}^{2}}$ or $ {{y}^{2}}$, so factor out the 4 in front of the $ {{x}^{2}}$. Don’t forgot to include it when adding to the right side. After you complete the square, divide all terms by 4, so we have a 1 on the right.

 

We will use equation: $ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}+\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1$, since $ 4>1$ (vertical ellipse). We see that the center of the ellipse is at $ (–3,–1)$, so we can first plot that point.

 

$ {{a}^{2}}=4$, so $ a=2$. Since the center is $ (–3,–1)$, the vertices are $ (–3,–1–2)$ and $ (–3,–1+2)$, or $ (–3,–3)$ and $ (–3,1)$. $ {{b}^{2}}=1$, so $ b=1$. Thus, the co-vertices are $ (-3-1,-1)$ and $ (–3+1,–1)$, or $ (–4,–1)$ and $ (–2,–1)$. Now let’s find the foci: $ {{c}^{2}}={{a}^{2}}-{{b}^{2}}=4-1=3$. $ c=\sqrt{3}$, and the foci are $ \displaystyle \left( {-3,-1\pm \sqrt{3}} \right)$.

 

Notice that the vertices and foci are along the vertical line $ x=3$. The major axis is $ 2a=4$, and the minor axis is $ 2b=2$.

Writing Equations of Ellipses

You may be asked to write an equation from either a graph or a description of an ellipse:

Problem

Write the equation of the ellipse, and find the sum of the distance from any point on the ellipse to the two foci:   

Solution:

We can see that the ellipse is 10 across (the major axis length) and 4 down (the minor axis length). So, $ 2a=10$, and $ 2b=4$. We can also see that the center of the ellipse $ \left( {h,k} \right)$ is at $ \left( {4,-3} \right)$.

Since the ellipse is horizontal, we’ll use the equation $ \displaystyle \frac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\frac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1$. Plug in our values for $ a,\,b,\,h,\,\,\text{and}\,k$, and we get $ \displaystyle \frac{{{\left( x-4 \right)}^{2}}}{25}+\frac{{{\left( y+3 \right)}^{2}}}{4}=1$. Note that we didn’t have to have the coordinates of the foci to obtain the equation of the ellipse.

The constant sum for this ellipse is $ 2a=2\left( 5 \right)=10$.

Problem:

Find the equation of this ellipse, graph, and find the domain and range: Endpoints of major or minor axis at $ \left( {-1,-6} \right)$ and $ \left( {-1,2} \right)$ and focus at $ \left( {-1,-3} \right)$. 

Solution:

Let’s graph the points we have, and go from there.

Ellipse Math/Notes

Domain: $ \left[ {-1-\sqrt{{15}},-1+\sqrt{{15}}} \right]$     Range: $ \left[ {-6,2} \right]$

Let’s first graph the points we have, and we can see that the ellipse is (barely!) vertical. We know that the endpoints $ (–1,–6)$ and $ (–1,2$) are in fact vertices, and not co-vertices (since the focus is on the same line). The center is halfway between the two vertices, so it is $ (-1,-2)$.

 

$ a=4$, so $ {{a}^{2}}=1$. $ c=1$ (distance from center to a focus), so $ {{c}^{2}}=1$. Since $ {{c}^{2}}={{a}^{2}}-{{b}^{2}}$,  $ {{b}^{2}}={{a}^{2}}-{{c}^{2}}=16-1=15$. Thus, $ b=\sqrt{{15}}$, which we’ll need for the domain. Note that the co-vertices would be $ \left( {-1-\sqrt{{15}},-2} \right)$ and $ \left( {-1+\sqrt{{15}},-2} \right)$.

 

The equation of the ellipse is $ \displaystyle \frac{{{{{\left( {x+1} \right)}}^{2}}}}{{15}}+\frac{{{{{\left( {y+2} \right)}}^{2}}}}{{16}}=1$.

Applications of Ellipses

The foci of ellipses are very useful in science for their reflective properties (sound waves, light rays and shockwaves, as examples), and are even used in medical applications. In fact, Kepler’s first law of planetary motion states that the path of a planet’s orbit models an ellipse with the sun at one focus; the orbits of asteroids and other bodies are another elliptical application.

Problem:

Two girls are standing in a whispering gallery that is shaped like semi-elliptical arch. The height of the arch is 30 feet, and the width is 100 feet. How far from the center of the room should whispering dishes be placed so that the girls can whisper to each other? (Whispering dishes are places at the foci of an ellipse).

Solution:

Ellipse Math/Notes
We’ll put the center of the arch at $ (0,0)$.

 

Since the width of the arch is 100 ft, $ a=50$. The height of the arch is 30 feet, so $ b=30$ (the height of the arch is only half of the minor axis of the ellipse). Therefore, we know the equation of the ellipse is $ \displaystyle \frac{{{{x}^{2}}}}{{2500}}+\frac{{{{y}^{2}}}}{{900}}=1$.

 

We need to get $ c$, so we can find the foci, since the whispering dishes are at the foci. Since $ {{c}^{2}}={{a}^{2}}-{{b}^{2}}$, $ {{c}^{2}}={{50}^{2}}-{{30}^{2}}=1600$, so $ c=40$. Each girl would stand 40 feet from the center of the room.

Problem:

An ice rink is in the shape of an ellipse, and is 150 feet long and 75 feet wide. What is the width of the rink 15 feet from a vertex?

Solution:

Ellipse Math/Notes
Let’s first find the equation of the ellipse, with the center at $ (0,0)$. Since the major axis is 150, and the minor axis is 75, we have $ a=75$ and $ b=37.5$. From this, we know the equation of the ellipse is $ \displaystyle \frac{{{{x}^{2}}}}{{{{{75}}^{2}}}}+\frac{{{{y}^{2}}}}{{{{{37.5}}^{2}}}}=1$, or $ \displaystyle \frac{{{{x}^{2}}}}{{5625}}+\frac{{{{y}^{2}}}}{{1406.25}}=1$.

 

Now that we have the equation, we can plug in any $ x$ value to get the $ y$ value(s) on the ellipse; since we want the width of the ellipse 15 feet from the vertex, our $ x$ value is $ 75-15=60$. Plugging in 60 for $ x$, we get: $ \displaystyle \frac{{{{{60}}^{2}}}}{{5625}}+\frac{{{{y}^{2}}}}{{1406.25}}=1$; solving for $ y$, we get $ \displaystyle \pm \sqrt{{\left( {1-\frac{{{{{60}}^{2}}}}{{5625}}} \right)\times 1406.25}}=\pm 22.5$ (take positive only). Note that we need to take double 22.5 to get the whole width: the width of the rink 15 feet from a vertex is 45 feet.

Hyperbolas

A hyperbola sort of looks like two parabolas that point at each other, and is the set of points whose absolute value of the differences of the distances from two fixed points (the foci) inside the hyperbola is always the same, $ \left| {{{d}_{1}}-{{d}_{2}}} \right|=2a$.

This distance, $ 2a$, is called the focal radii distance, focal constant, or constant difference, with $ a$ being the distance between the center of the hyperbola to a vertex; thus, $ 2a$ is the distance between the two vertices. Can you see this in the drawing? (Lay the two distances down flat.)

Note that the two parts of a hyperbola aren’t parabolas, and are called the branches of the hyperbola.

The equation of a horizontal hyperbola (as shown below) that is centered on the origin $ \left( {0,0} \right)$ is $ \displaystyle \frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$. The equation of a transformed horizontal hyperbola with center $ (h,k)$ is $ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$. For vertical hyperbolas, the equations are $ \displaystyle \frac{{{{y}^{2}}}}{{{{a}^{2}}}}-\frac{{{{x}^{2}}}}{{{{b}^{2}}}}=1$ and $ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1$.

The length of the axis in which the hyperbola lies (called the transverse axis) is $ 2a$, and this is along the $ x$-axis for a horizontal hyperbola. Again, the distance from the center of the hyperbola to a vertex is $ a$, so the vertices are at $ \left( \pm a,0 \right)$ for a hyperbola centered at the origin.

The length of the conjugate axis is $ 2b$, and note that $ a$ does not have to be bigger than $ b$, like it does for an ellipse. The distance from the center of the hyperbola to a co-vertex is $ b$); note that the co-vertices do not lie on the hyperbola; they are one what we call the central rectangle (or fundamental rectangle) of the hyperbola, whose diagonals are asymptotes for the hyperbola branches. The conjugate axis is along the $ y$-axis for a horizontal hyperbola, and the co-vertices are at $ \left( 0,\pm b \right)$ for a hyperbola centered at the origin.

The asymptotes for a horizontal hyperbola centered at $ \left( {h,k} \right)$ are $ \displaystyle y-k=\pm \frac{b}{a}\left( {x-h} \right)$. For a more generic equation, the asymptotes for a hyperbola centered at $ (h,k)$ are $ \displaystyle y-k=\pm \frac{{\sqrt{{\text{number under the }y}}}}{{\sqrt{{\text{number under the }x}}}}\left( {x-h} \right)$ (note that $ \displaystyle \pm \frac{{\sqrt{{\text{number under the }y}}}}{{\sqrt{{\text{number under the }x}}}}$ are the slopes of the diagonals of the central rectangle of the hyperbola) – this works for both horizontal and vertical hyperbolas!

The focuses or foci always lie inside the curves on the major axis, and the distance from the center to a focus is $ c$. It turns out that  $ {{a}^{2}}+{{b}^{2}}={{c}^{2}}$; I like to remember that you always use the different sign for this equation: since ellipses have a plus sign in the equation $ \displaystyle \frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1$, they have a minus sign in $ {{a}^{2}}-{{b}^{2}}={{c}^{2}}$; since hyperbolas have a minus sign in the equation $ \displaystyle \frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$, they have a plus sign in $ {{a}^{2}}+{{b}^{2}}={{c}^{2}}$.

Sometimes you will be asked to get the eccentricity of a hyperbola $ \displaystyle \frac{c}{a}$, which is a measure of how “straight” or “stretched” the hyperbola is. Note also that, like for an ellipse, the focal width (focal chord, or focal rectum) of a hyperbole is $ \displaystyle \frac{{2{{b}^{2}}}}{a}$; this the distance perpendicular to the major axis that goes through the focus.

Here are the two different “directions” of hyperbolas and the generalized equations for each:

Horizontal Hyperbola

 ($ {{x}^{2}}$ comes first)

Vertical Hyperbola

($ {{y}^{2}}$ comes first)

 At $ \displaystyle \left( {0,0} \right):\,\,\,\,\,\frac{{{{x}^{2}}}}{{{{a}^{2}}}}-\frac{{{{y}^{2}}}}{{{{b}^{2}}}}=1$

General:  $ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$

$ {{a}^{2}}+{{b}^{2}}={{c}^{2}}$

Center: $ \left( {h,k} \right)$     Foci: $ \left( {h\pm c,k} \right)$  

Vertices: $ \left( {h\pm a,k} \right)$    Co-Vertices:  $ \left( {h,k\pm b} \right)$ 

Length of Transverse Axis: $ 2a$

Length of Conjugate Axis: $ 2b$

Asymptotes: $ \displaystyle y-k=\pm \frac{b}{a}\left( {x-h} \right)$

At $ \displaystyle \left( {0,0} \right):\,\,\,\,\,\frac{{{{y}^{2}}}}{{{{a}^{2}}}}-\frac{{{{x}^{2}}}}{{{{b}^{2}}}}=1$:

General:  $ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1$

$ {{a}^{2}}+{{b}^{2}}={{c}^{2}}$

Center: $ \left( {h,k} \right)$     Foci: $ \left( {h,k\pm c} \right)$   

 Vertices: $ \left( {h,k\pm a} \right)$     Co-Vertices: $ \left( {h\pm b,k} \right)$  

Length of Transverse Axis: $ 2a$

Length of Conjugate Axis: $ 2b$

Asymptotes: $ \displaystyle y-k=\pm \frac{a}{b}\left( {x-h} \right)$

Notes: $ {{b}^{2}}$ is always after the minus sign$ {{a}^{2}}+{{b}^{2}}={{c}^{2}}$;  Tranverse Axis Length: $ =2a$;  Conjugate Axis Length $ =2b$; Asymptotes are $ \displaystyle y-k=\pm \frac{{\sqrt{{\text{number under the }y}}}}{{\sqrt{{\text{number under the }x}}}}\left( {x-h} \right)$

You also may have to complete the square to be able to graph an hyperbola, like we did here for a circle. (And since you always have to have a “1” after the equal sign, you may have to divide all terms by the constant on the right, if it isn’t “1”). Remember, for the conic to be a hyperbola, the coefficients of the $ {{x}^{2}}$ and $ {{y}^{2}}$ must have different signs. Let’s put it all together and graph some hyperbolas:

Hyperbola Problem and Graph Math/Notes

Identify the center, vertices, foci, and equations of the asymptotes for the following hyperbola; then graph: $ 9{{x}^{2}}-16{{y}^{2}}-144=0$.

 

Domain: $ \left( {-\infty ,-4} \right]\cup \left[ {4,\infty } \right)$      Range:  $ \left( {-\infty ,\infty } \right)$

Notice that the vertices and foci lie are along the horizontal line $ y=0$, and the length of the transverse axis is $ 2a=8$. The length of the conjugate axis is $ 2b=6$.

We first need to get our equation into the form of hyperbola by adding 144 to both sides, and then dividing all terms by 144: $ \displaystyle \frac{{9{{x}^{2}}}}{{144}}-\frac{{16{{y}^{2}}}}{{144}}=\frac{{144}}{{144}}$, or $ \displaystyle \frac{{{{x}^{2}}}}{{16}}-\frac{{{{y}^{2}}}}{9}=1$. We will use the equation $ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$, since the $ x$ comes first (horizontal).

 

This would make $ {{a}^{2}}=16$, so $ a=4$. Since the hyperbola’s center is $ (0,0)$, the vertices are $ (-4,0)$ and $ (4,0)$. $ {{b}^{2}}=9$,  so $ b=3$. Thus, the co-vertices are $ (0,-3)$ and $ (0,3)$. Now we can construct our central rectangle; we use $ a$ and $ b$ to create it.

 

Now let’s find the foci: $ {{c}^{2}}={{a}^{2}}+{{b}^{2}}=9+16=25$. Thus, $ c=5$ and the foci are $ \displaystyle \left( {\pm \,5,0} \right)$.

 

The equation of the asymptotes (which go through the corners of the central rectangle) are $ \displaystyle y-k=\pm \frac{{b\text{ (rise)}}}{{a\text{ (run)}}}\left( {x-h} \right)$, or $ \displaystyle y=\pm \frac{3}{4}x$. (Remember to use the square root of what’s under the $ y$ for the numerator of the slope, and the square of what’s under the $ x$ for the denominator.)

Identify the center, vertices, foci, and equations of the asymptotes for the following hyperbola; then graph: $ \displaystyle \frac{{{\left( y+3 \right)}^{2}}}{4}-\frac{{{\left( x-2 \right)}^{2}}}{36}=1$.

 

Domain: $ \left( {-\infty ,\infty } \right)$       Range: $ \left( {-\infty ,-5} \right]\cup \left[ {-1,\infty } \right)$

Notice that the vertices and foci are along the vertical line $ x=2$, and the length of the transverse axis is $ 2a=4$. The length of the conjugate axis is $ 2b=12$.

We will use equation: $ \displaystyle \frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{b}^{2}}}}=1$, since the $ y$ comes first (vertical). We see that the center of the hyperbola is at $ (2,–3)$, so we can first plot that point.

 

$ {{a}^{2}}=4$, so $ a=2$. Since the center is $ (2,–3)$, the vertices are $ (2,–3–2)$ and $ (2,–3+2)$, or $ (2,-5)$ and $ (2,-1)$. $ {{b}^{2}}=36$, so $ b=6$. Thus, the co-vertices are $ (2-6,-3)$ and $ (2+6,-3)$ or $ (-4,-3)$ and $ (8,-3)$.

 

Now let’s find the foci: $ {{c}^{2}}={{a}^{2}}+\,\,{{b}^{2}}=4+36=40$. Thus, $ c=\sqrt{{40}}\text{ (or }\,2\sqrt{{10}})$, and the foci are $ \displaystyle \left( {2,-3\,\pm \sqrt{{40}}} \right)$.

 

The equation of the asymptotes (which go through the corners of the central rectangle) are $ \displaystyle y-k=\pm \frac{{a\text{ (rise)}}}{{b\text{ (run)}}}\left( {x-h} \right)$, or $ \displaystyle y+3=\pm \frac{2}{6}\left( {x-2} \right)$ or $ \displaystyle y+3=\pm \frac{1}{3}\left( {x-2} \right)$. (Remember to use the square root of  what’s under the $ y$ for the numerator of the slope, and the square of what’s under the $ x$ for the denominator.)

Here’s one where you have to Complete the Square to be able to graph the hyperbola:

Hyperbola Problem and Graph Math/Notes

Identify the center, vertices, foci, and equations of the asymptotes for the following hyperbola; then graph:  $ 49{{y}^{2}}-25{{x}^{2}}+98y-100x+1174=0$.

 

Domain: $ \left( {-\infty ,-9} \right]\cup \left[ {5,\infty } \right)$    Range: $ \left( {-\infty ,\infty } \right)$

$ \displaystyle \begin{array}{c}49{{y}^{2}}+98y-25{{x}^{2}}-100x=-1174\\49\left( {{{y}^{2}}+2y} \right)-25\left( {{{x}^{2}}+4x} \right)=-1174\\49\left( {{{y}^{2}}+2y+\underline{{\,\,\,\,\,\,}}\,} \right)-25\left( {{{x}^{2}}+4x+\underline{{\,\,\,\,\,\,}}\,} \right)=-1174+\underline{{\,\,\,\,\,\,}}\\49\left( {{{y}^{2}}+2y+\color{#2E8B57}{{\underline{{{{{\left( 1 \right)}}^{2}}}}}}\,} \right)-25\left( {{{x}^{2}}+4x+\color{#2E8B57}{{\underline{{{{{\left( 2 \right)}}^{2}}}}}}\,} \right)=\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-1174+\color{#2E8B57}{{\underline{{49{{{\left( 1 \right)}}^{2}}-25{{{\left( 2 \right)}}^{2}}}}}}\\49{{\left( {y+1} \right)}^{2}}-25{{\left( {x+2} \right)}^{2}}=-1225\end{array}$

$ \displaystyle \frac{{{{{\left( {x+2} \right)}}^{2}}}}{{49}}-\frac{{{{{\left( {y+1} \right)}}^{2}}}}{{25}}=1$

We need to first complete the square so we can get the equation in hyperbola form. Put all the $ x$’s and $ y$’s together with the constant term on the other side. Watch the negative signs; it turns to be a horizontal hyperbola, with the coefficient of the $ {{x}^{2}}$ being positive (we ended up dividing all terms by  –1225).

We will use equation $ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$, since $ x$ comes first (horizontal hyperbola). We see that the center of the hyperbola is at $ (–2,–1)$, so we can first plot that point.

$ {{a}^{2}}=49$, so $ a=7$. Since the center is $ (–2,–1)$, the vertices are $ (–2-7,–1)$ and $ (–2+7,–1)$, or $ (–9,–1)$ and $ (5,–1)$. $ {{b}^{2}}=25$, so $ b=5$. The co-vertices are $ (–2,-1-5)$ and $ (–2,-1+5)$ or $ (–2,–6)$ and $ (–2,4)$.

Now let’s find the foci: $ {{c}^{2}}={{a}^{2}}+{{b}^{2}}=49+25=74$. $ c=\sqrt{{74}}$ , and the foci are $ \displaystyle \left( {-2\pm \sqrt{{74}},\,\,-1\,} \right)$.

The equation of the asymptotes (which go through the corners of the central rectangle) are $ \displaystyle y-k=\pm \frac{{b\text{ (rise)}}}{{a\text{ (run)}}}\left( {x-h} \right)$, or $ \displaystyle y+1=\pm \frac{5}{7}\left( {x+2} \right)$

Writing Equations of Hyperbolas

You may be asked to write an equation from either a graph or a description of a hyperbola, as in the following problem:

Hyperbola Math/Notes
Write the equation of the hyperbola:

 

We can see that the center of the hyperbola is $ \left( {2,-5} \right)$, the transverse axis length ($ 2a$) is 6, and the conjugate axis length ($ 2b$) is also 6. Thus, $ a=3$, and $ b=3$.

 

Since the hyperbola is horizontal, we’ll use the equation $ \displaystyle \frac{{{{{\left( {x-h} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {y-k} \right)}}^{2}}}}{{{{b}^{2}}}}=1$.

 

Plug in our values, and we get $ \displaystyle \frac{{{{{\left( {x-2} \right)}}^{2}}}}{9}-\frac{{{{{\left( {y+5} \right)}}^{2}}}}{9}=1$.

Problem:

Find the equation of the hyperbola where the difference of the focal radii is 6, and the endpoints of the conjugate axis are $ \left( {-2,8} \right)$ and $ \left( {-2,-2} \right)$.

Solution:

We probably don’t even need to graph this hyperbola, since we’re basically given what $ a$ and $ b$ are. Remember that the difference of the focal radii is $ 2a$, so $ a=3$.

Since the endpoints of the conjugate axis are along a vertical line, we know that the hyperbola is horizontal, and the co-vertices are $ \left( {-2,8} \right)$ and $ \left( {-2,-2} \right)$. From this information, we can get the center (midpoint between the co-vertices), which is $ \left( {-2,3} \right)$ and the length of the minor axis ($ 2b$), which is 10. So $ b=5$. (Draw the points first if it’s difficult to see).
The equation of the ellipse then is  $ \displaystyle \frac{{{\left( x+2 \right)}^{2}}}{9}-\frac{{{\left( y-3 \right)}^{2}}}{25}=1$.

Problem:

Find the equation of the hyperbola where one of the vertices is at $ \left( {-3,2} \right)$, and the asymptotes are $ \displaystyle y-2=\pm \frac{2}{3}\left( {x-3} \right)$.

Solution:

Let’s try to graph this one, since it’s hard to tell what we know about it!

Hyperbola Math/Notes
We can see from the equation of the asymptotes that the center of the hyperbola is $ \left( {3,2} \right)$. Graph this center and also graph the vertex that is given to see that the hyperbola is horizontal.

We can see that $ a$ (difference between center and vertex) is 6. So far then we have:

$ \displaystyle \frac{{{{{\left( {x-3} \right)}}^{2}}}}{{{{6}^{2}}}}-\frac{{{{{\left( {y-2} \right)}}^{2}}}}{{{{b}^{2}}}}=\,\,1$

We also see from the asymptotes equation that their slope is $ \displaystyle \pm \frac{2}{3}$. We actually don’t even need to draw them, since we know in our case, since it’s a horizontal hyperbola, we’ll have $ \displaystyle y-2=\pm \frac{{b\text{ (rise)}}}{{6\text{ (run)}}}\left( {x-3} \right)$ (rise is the square root of what’s under the $ y$; run is the square root of what’s under the $ x$) from the equation of the hyperbola above.

Now we can set up a proportion for the asymptote slopes: $ \displaystyle \frac{b}{6}=\frac{2}{3}$; by cross multiplying, we get $ b=4$.

The equation of the hyperbola is: $ \displaystyle \frac{{{{{\left( {x-3} \right)}}^{2}}}}{{{{6}^{2}}}}-\frac{{{{{\left( {y-2} \right)}}^{2}}}}{{{{4}^{2}}}}=1$, or $ \displaystyle \frac{{{{{\left( {x-3} \right)}}^{2}}}}{{36}}-\frac{{{{{\left( {y-2} \right)}}^{2}}}}{{16}}=1$.

Applications of Hyperbolas

Like ellipses, the foci of hyperbolas are very useful in science for their reflective properties, and hyperbolic properties are often used in telescopes. They are also used to model paths of moving objects, such as alpha particles passing the nuclei of atoms, or a spacecraft moving past the moon to the planet Venus.

Problem:

A comet’s path (as it approaches the sun) can be modeled by one branch of the hyperbola $ \displaystyle \frac{{{y}^{2}}}{1096}-\frac{{{x}^{2}}}{41334}=1$, where the sun is at the focus of that part of the hyperbola. Each unit of the coordinate system is 1 million miles. (a) Find the coordinates of the sun (assuming it is at the focus with non-negative coordinates). Round to the nearest hundredth. (b) How close does the comet come to the sun?

Solution:

Again, it’s typically easier to graph the hyperbola first, and then answer the questions.

Hyperbola Math/Notes
We’ll put the center of the hyperbola at $ (0,0)$, and only work with the positive branch. The hyperbola is vertical since the $ {{y}^{2}}$ comes before the $ {{x}^{2}}$.  $ {{a}^{2}}=1096$ and $ {{b}^{2}}=41334$.

 

(a)  Since the sun is at a focus, we can use the equation $ {{c}^{2}}={{a}^{2}}+{{b}^{2}}$ and take the positive value of $ c$, which is $ \sqrt{{1096+41334}}\approx 205.99$. The coordinates of the sun is $ \left( {0,205.99} \right)$, where each unit is in millions of miles.

 

(b)  The closest the comet gets the sun as when the comet is at the vertex, which is $ \left( {0,a} \right)$, or $ \left( {0,33.11} \right)$. The closest the comet gets to the sun is about $ 206-33=173$ million miles.

Problem:

Two buildings in a shopping complex are shaped like branches of the hyperbola $ 729{{x}^{2}}-1024{{y}^{2}}-746496=0$, where $ x$ and $ y$ are in feet. How far apart are the buildings at their closest part?

Solution:

Try this one without drawing it, since we know that the closest points of a hyperbola are where the vertices are, and the buildings would be $ 2a$ feet apart.

By doing a little algebra (adding 746496 to both sides and then dividing all terms by 746496) we see that the equation in hyperbolic form is $ \displaystyle \frac{{{x}^{2}}}{1024}-\frac{{{y}^{2}}}{729}=1$. Thus, $ a=\sqrt{{1024}}=32$. The building are 32 x 2 = 64 feet apart at their closest part.

Problem:

Two radar sites are tracking an airplane that is flying on a hyperbolic path. The first radar site is located at $ \left( {0,0} \right)$, and shows the airplane to be 200 meters away at a certain time. The second radar site, located 160 miles east of the first, shows the airplane to be 100 meters away at this same time. Find the coordinates of all possible points where the airplane could be located. (Find the equation of the hyperbola where the plane could be located).

Solution:

Draw a picture first and remember that the constant difference for a hyperbola is always $ 2a$. The plane’s path is actually on one branch of the hyperbola; let’s create a horizontal hyperbola, so we’ll use the equation $ \displaystyle \frac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\frac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1$:

Hyperbola Math/Notes
We know that the distance from the “leftmost” focus to the plane (hyperbola) is 200 meters, and the distance from the “rightmost” focus to the plane (hyperbola) is 100 meters.

 

This is actually the “constant difference” of the hyperbola, which is $ 2a$. $ 200-100=2a$, or $ a=50$. Thus, $ {{a}^{2}}=2500$. We also know that $ 2c$ (distance between foci) $ =160$, so $ c=80$. Since $ {{c}^{2}}={{a}^{2}}+{{b}^{2}}$, we can obtain $ {{b}^{2}}:\,{{b}^{2}}={{c}^{2}}-{{a}^{2}}={{80}^{2}}-{{50}^{2}}=3900$.

 

In the model, the center of the hyperbola is at $ (80,0)$, so the path of the airplane follows the hyperbola$ \displaystyle \frac{{{{{\left( {x-80} \right)}}^{2}}}}{{2500}}-\frac{{{{y}^{2}}}}{{3900}}=1$ .

Problem:

Alpha particles are deflected along hyperbolic paths when they are directed towards the nuclei of gold atoms. If an alpha particle gets as close as 10 units to the nucleus along a hyperbolic path with asymptote $ \displaystyle y=\frac{2}{5}x$, what is the equation of its path?

Solution:

Draw a picture first and make the nucleus the center of the hyperbola at $ \left( {0,0} \right)$.

Hyperbola Math/Notes
We can put the nucleus at $ (0,0)$, and the asymptotes at $ \displaystyle y=\pm \frac{2}{5}x$. From the drawing, we see that the closest the hyperbolic alpha particle gets to the nucleus is at $ (0,a)$; thus, $ a=10$.

 

Now we have to figure out what $ b$ is; we need to use the equation of the asymptote to do this. We do know that $ \displaystyle \frac{b}{a}=\frac{2}{5}$ (formula of asymptotes for horizontal hyperbola), and that $ a=10$. By cross multiplying with $ \displaystyle \frac{b}{{10}}=\frac{2}{5}$, we get $ b=4$.

 

Therefore, the path of the alpha particle follows the hyperbola $ \displaystyle \frac{{{{x}^{2}}}}{{100}}-\frac{{{{y}^{2}}}}{{16}}=1$.

Problem:

When flying faster than the speed of sound, an airplane that flies parallel to the ground forms sound waves in the shape of a cone behind it. The waves intersect the ground in the shape of a hyperbola, with the airplane directly above the center of this hyperbola.

If you hear a sonic boom along the hyperbola $ \displaystyle \frac{{{{x}^{2}}}}{{100}}-\frac{{{{y}^{2}}}}{4}=1$, what is the shortest horizontal distance you could be to the airplane?

Solution:

Draw a picture first and make the plane directly over the point $ \left( {0,0} \right)$.

Hyperbola Math/Notes

$ \displaystyle \frac{{{{x}^{2}}}}{{{{a}^{2}}}}-\frac{{{{y}^{2}}}}{{{{b}^{2}}}}=1:\,\,\frac{{{{x}^{2}}}}{{100}}-\frac{{{{y}^{2}}}}{4}=1$

The $ x\text{-}y$ axis can be the surface of the ground, with the plane at $ \left( {0,0} \right)$. The waves of the sonic boom make rings that create a hyperbola intersecting the ground behind the plane.

 

An observer who hears the sonic boom must be standing on the hyperbola; the closest distance to the plane would be a vertex of the hyperbola; this would be 10 feet away (“$ a$” miles).

Identifying the Conic

Sometimes you are given an equation or a description of a conic, and asked to identify the conic. Remember these rules:

  • $ {{x}^{2}}$ with other $ y$’s (and maybe $ x$’s), or $ {{y}^{2}}$ with other $ x$’s (and maybe $ y$’s):   parabola
  • $ {{x}^{2}}$ and $ {{y}^{2}}$ with same coefficients and  +  sign (right-hand side positive):  circle
  • $ {{x}^{2}}$ and $ {{y}^{2}}$ with different coefficients  and  +  sign (right-hand side positive):  ellipse
  • $ {{x}^{2}}$ and $ {{y}^{2}}$ with same coefficients and  –  sign (right-hand side positive):   hyperbola
  • $ {{x}^{2}}$ and $ {{y}^{2}}$ with different coefficients and  –  sign (right-hand side positive):   hyperbola

Here are some examples; I always find it’s easier to work/graph these on graph paper to see what’s going on:

Identify the Conic Solution
Identify these conics:

 

  (a) $ 16{{y}^{2}}=-4{{x}^{2}}+64$

 

  (b) $ 6{{x}^{2}}-6{{y}^{2}}=54$

 

  (c) $ \displaystyle {{x}^{2}}+{{y}^{2}}=-4x-y+4$

 

  (d) $ {{x}^{2}}-2y=x+3$

 

  (e) $ {{y}^{2}}+4y+16{{x}^{2}}+20=0$

(a) Get all variables on one side: $ 4{{x}^{2}}+16{{y}^{2}}=64$. Since the coefficients of $ {{x}^{2}}$ and $ {{y}^{2}}$ are different, but we have a $ +$ sign, it’s an ellipse. (We would end up with $ \displaystyle \frac{{{{x}^{2}}}}{{16}}+\frac{{{{y}^{2}}}}{4}=1$.)

 

(b) The coefficients of $ {{x}^{2}}$ and $ {{y}^{2}}$ are the same,  but we have a $ -$ sign between them, it’s a hyperbola. (We would end up with $ \displaystyle \frac{{{{x}^{2}}}}{9}-\frac{{{{y}^{2}}}}{9}=1$.)

 

(c) Since the coefficients of $ {{x}^{2}}$ and $ {{y}^{2}}$ are the same, we have a circle. We’d have to complete the square to get it in $ {{\left( {x-h} \right)}^{2}}+{{\left( {y-k} \right)}^{2}}={{r}^{2}}$ form.

 

(d) Since we have $ {{x}^{2}}$ with other $ y$’s and $ x$’s, we have a parabola. We’d have to complete the square to get it into $ y=a{{\left( {x-h} \right)}^{2}}+k$ (horizontal) form.

 

(e) Get all variables on one side: $ {{y}^{2}}+4y+16{{x}^{2}}=-20$. Since the coefficients of $ {{x}^{2}}$ and $ {{y}^{2}}$ are different, but we have a  +  sign, it appears to be an ellipse. But after completing the square and dividing by 16, we see we’ll have a $ -1$ on the right-hand side. Thus, it’s none of the conics we’ve studied. (We would end up with $ \displaystyle {{x}^{2}}+\frac{{{{{\left( {y+2} \right)}}^{2}}}}{{16}}=-1$.)

For the following, write the equation of the conic, using the given information:

Conic Solution
Ellipse with foci $ \left( {0,-2\sqrt{{13}}} \right),\left( {0,2\sqrt{{13}}} \right)$, and focal constant 26. The focal constant is the same as the constant sum, and is defined as $ 2a$ for an ellipse (so $ a=13$). Since the foci are “up and down”, we know it’s a vertical ellipse, so we have $ \displaystyle \frac{{{{x}^{2}}}}{{{{b}^{2}}}}+\frac{{{{y}^{2}}}}{{{{{13}}^{2}}}}=1$.

To get $ b$, we can use $ {{c}^{2}}={{a}^{2}}-{{b}^{2}}$, and we know that $ {{c}^{2}}={{\left( {2\sqrt{{13}}} \right)}^{2}}=52$. $ {{b}^{2}}={{a}^{2}}-{{c}^{2}}={{13}^{2}}-52=117$.

The equation of the ellipse is $ \displaystyle \frac{{{{x}^{2}}}}{{117}}+\frac{{{{y}^{2}}}}{{{{{13}}^{2}}}}=1$, or $ \displaystyle \frac{{{{x}^{2}}}}{{117}}+\frac{{{{y}^{2}}}}{{169}}=1$.

The equations of the asymptotes are $ \displaystyle y=\pm 3\left( {x+6} \right)-2$, and the length of the horizontal conjugate axis is 10. The length of the horizontal conjugate axis is $ 2b$ for a hyperbola, and for this problem, $ 2b=10$, so $ b=5$. Since the conjugate axis is horizontal, we know we have a vertical hyperbola.

We know the center of the hyperbola is $ (-6,-2)$ from the asymptotes. Thus, we have $ \displaystyle \frac{{{{{\left( {y+2} \right)}}^{2}}}}{{{{a}^{2}}}}-\frac{{{{{\left( {x+6} \right)}}^{2}}}}{{{{5}^{2}}}}=1$. To get $ a$, we can use the equation of the asymptotes: we know that  $ \displaystyle \frac{a}{b}$(what’s under the $ y$ over what’s under the $ x$) $ =3$. $ \displaystyle \frac{a}{5}=\frac{3}{1}$, or $ a=15$.

The equation of the hyperbola is $ \displaystyle \frac{{{{{\left( {y+2} \right)}}^{2}}}}{{{{{15}}^{2}}}}-\frac{{{{{\left( {x+6} \right)}}^{2}}}}{{{{5}^{2}}}}=1$.

The set of points that are equidistant from a fixed point $ (–3,5)$ as they are from a fixed line $ x=8$. By definition, we know this is a parabola, and the focus is at $ (-3,5)$. Since the vertex is halfway between the focus and the directrix ($ x=8$), we know the vertex is at $ \displaystyle \left( {\frac{{-3+8}}{2},5} \right),\text{ or }\left( {2.5,5} \right),$ and the parabola is horizontal and opens up to the left (draw it!).

We also know that $ p$ (distance from vertex to focus) is $ 8-2.5=5.5$, so the equation is $ \displaystyle x=-\frac{1}{{4p}}{{\left( {y-k} \right)}^{2}}+h$, or $ \displaystyle x=-\frac{1}{{22}}{{\left( {y-5} \right)}^{2}}+2.5$.

Foci at $ \left( {-2,4\pm \sqrt{5}} \right)$ and endpoints of an axis are at $ \left( {-2\pm \sqrt{3},4} \right)$. It’s best to graph this one! We see that it must be a vertical ellipse, since we’re talking about foci and endpoints, and the foci are vertical. We can see that $ b=\sqrt{3}$ since that’s what’s added and subtracted horizontally to the center of the ellipse $ (-2,4)$ (draw it!). From a graph, we can see that the given endpoints of the axis are co-vertices.

We have $ \displaystyle \frac{{{{{\left( {x+2} \right)}}^{2}}}}{3}+\frac{{{{{\left( {y-4} \right)}}^{2}}}}{{{{a}^{2}}}}=1$. To get $ a$, we can use $ {{c}^{2}}={{a}^{2}}-{{b}^{2}}$, and, from the foci, we know that $ {{c}^{2}}$ is $ {{\left( {\sqrt{5}} \right)}^{2}}=5$. So, $ {{a}^{2}}={{c}^{2}}+{{b}^{2}}=5+3=8$.

The equation of the ellipse is $ \displaystyle \frac{{{{{\left( {x+2} \right)}}^{2}}}}{3}+\frac{{{{{\left( {y-4} \right)}}^{2}}}}{8}=1$. Tough!

Learn these rules, and practice, practice, practice!

On to Systems of Non-Linear Equations  – you are ready!