Note that more detail about solving trig equations can be found here in the Solving Trigonometric Equations section.
Before we get started, here is a table of some common trig identities for future reference:
Reciprocal and Quotient Identities | $ \displaystyle \sin \theta =\frac{1}{{\csc \theta }}\,\,\,\,\,\,\,\,\,\,\,\csc \theta =\frac{1}{{\sin \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \theta =\frac{1}{{\sec \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\sec \theta =\frac{1}{{\cos \theta }}\,$ $ \displaystyle \tan \theta =\frac{1}{{\cot \theta }}=\frac{{\sin \theta }}{{\cos \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\cot \theta =\frac{1}{{\tan \theta }}=\frac{{\cos \theta }}{{\sin \theta }}$ |
Pythagorean Identities | $ \displaystyle {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\cot }^{2}}\theta +1={{\csc }^{2}}\theta $ |
Sum and Difference Identities | $ \begin{array}{l}\sin \left( {A+B} \right)=\sin A\cos B+\cos A\sin B\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \left( {A+B} \right)=\cos A\cos B-\sin A\sin B\\\sin \left( {A-B} \right)=\sin A\cos B-\cos A\sin B\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \left( {A-B} \right)=\cos A\cos B+\sin A\sin B\end{array}$ $ \displaystyle \tan \left( {A+B} \right)=\frac{{\tan A+\tan B}}{{1-\tan A\tan B}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\tan \left( {A-B} \right)=\frac{{\tan A-\tan B}}{{1+\tan A\tan B}}$
From these identities, you may be asked to be familiar with the Odd/Even Identities: $ \displaystyle \begin{array}{l}\text{EVEN: }\,\,\,\cos \left( {-x} \right)=\cos \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ODD:}\,\,\,\,\,\,\sin \left( {-x} \right)=-\sin \left( x \right)\,\,\,\,\,\,\,\tan \left( {-x} \right)=-\tan \left( x \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sec \left( {-x} \right)=\sec \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\csc \left( {-x} \right)=-\csc \left( x \right)\,\,\,\,\,\,\,\cot \left( {-x} \right)=-\cot \left( x \right)\end{array}$
…..and the Cofunction Identities in radians (trig function of an angle is equal to the value of the cofunction of the complement): $ \displaystyle \begin{align}\sin \left( {\frac{\pi }{2}-x} \right)&=\cos \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\csc \left( {\frac{\pi }{2}-x} \right)=\sec \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\tan \left( {\frac{\pi }{2}-x} \right)=\cot \left( x \right)\\\cos \left( {\frac{\pi }{2}-x} \right)&=\sin \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sec \left( {\frac{\pi }{2}-x} \right)=\csc \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cot \left( {\frac{\pi }{2}-x} \right)=\tan \left( x \right)\end{align}$ |
Double Angle Identities | $ \sin \left( {2A} \right)=2\sin A\cos A$ $ \begin{align}\cos \left( {2A} \right)&={{\cos }^{2}}A-{{\sin }^{2}}A\\&=1-2{{\sin }^{2}}A\\&=2{{\cos }^{2}}A-1\end{align}$ $ \displaystyle \tan \left( {2A} \right)=\frac{{2\tan A}}{{1-{{{\tan }}^{2}}A}}$ |
Half Angle Identities | $ \displaystyle \sin \left( {\frac{A}{2}} \right)=\pm \sqrt{{\frac{{1-\cos A}}{2}}}=\pm \sqrt{{\frac{1}{2}\left( {1-\cos A} \right)}};\,\cos \left( {\frac{A}{2}} \right)=\pm \sqrt{{\frac{{1+\cos A}}{2}}}=\pm \sqrt{{\frac{1}{2}\left( {1+\cos A} \right)}}$ $ \displaystyle \tan \left( {\frac{A}{2}} \right)=\frac{{\sin A}}{{1+\cos A}}=\frac{{1-\cos A}}{{\sin A}}$ Note: When solving, to get the correct sign when there’s a $ \pm $, check for the quadrant of the half angle, and see if that trig function is positive or negative. For example, for $ \displaystyle \cos \left( {\frac{A}{2}} \right)$, where $ A={{300}^{{}^\circ }}$, $ \displaystyle \frac{A}{2}=150{}^\circ $, which is in Quadrant 2, where cos is negative. Thus, use $ \displaystyle -\sqrt{{\frac{{1+\cos A}}{2}}}$. |
An “identity” is something that is always true, so you are typically either substituting or trying to get two sides of an equation to equal each other. Think of it as a reflection; like looking in a mirror. An example of a trig identity is $ \displaystyle \csc (x)=\frac{1}{\sin (x)}$; for any value of $ x$, this equation is true.
Trigonometric identities are sort of like puzzles since you have to “play” with them to get what you want. You will also have to do some memorizing for these, since most of them aren’t really obvious. You may not like Trig Identity problems, since they can resemble the proofs that you had to in Geometry. I actually love them, since I love to do puzzles!
There are typically two types of problems you’ll have with trig identities: working on one side of an equation to “prove” it equals the other side, and also solving trig problems by substituting identities to make the problem solvable.
We’ll start out with the simpler identities that you’ve seen before.
Reciprocal and Quotient Identities
You’ve already seen the reciprocal and quotient identities.
Trig Function | Reciprocal/Quotient Function | Hints |
$ \displaystyle \sin \theta =\frac{1}{{\csc \theta }}$ | $ \displaystyle \csc \theta =\frac{1}{{\sin \theta }}$ | I remember that sin is the reciprocal of cosecant (csc) since the “s” in the middle of csc matches the “s” at the beginning of sin. |
$ \displaystyle \cos \theta =\frac{1}{{\sec \theta }}$ | $ \displaystyle \sec \theta =\frac{1}{{\cos \theta }}$ | I remember that secant (sec) is the reciprocal of cos, since cos contains “c s” and sec contains “s c”. |
$ \displaystyle \tan \theta =\frac{1}{{\cot \theta }}$ | $ \displaystyle \cot \theta =\frac{1}{{\tan \theta }}$ | It’s easy to remember that tan is the reciprocal of cotangent (cot), since they both have “tangent” in them. |
$ \displaystyle \tan \theta =\frac{{\sin \theta }}{{\cos \theta }}$ | $ \displaystyle \cot \theta =\frac{{\cos \theta }}{{\sin \theta }}$ | (Quotient) We’ve already seen these, but the way I remember the order is that cot has the cos on the top (in the numerator). |
Here are some examples of simple identity proofs with reciprocal and quotient identities. Typically, to do these proofs, you must always start with one side (either side, but usually take the more complicated side) and manipulate the side until you end up with the other side. (Some teachers will let you go down both sides until the two sides are equal).
The best way to solve these is to turn everything into sin and cos. Note how we work on one side only and pull down the other side when it matches. It doesn’t matter which side we start on, but typically, it’s the most complicated.
Sometimes we have to find common denominators, like in the last example. We didn’t need to turn it into sin and cos, since we only had tan and cot in the identity, although it still would have worked.
And note that there may be more than one way to do these! Several answers may be “right”. And, of course, $ x$ and $ \theta$, as well as other variables are exchangeable.
Reciprocal and Quotient Trig Identities | ||
$ \displaystyle \sin x\cot x\,=\,\cos x$
$ \require{cancel} \displaystyle \cancel{{\sin x}}\left( {\frac{{\cos x}}{{\cancel{{\sin x}}}}} \right)=\cos x\,\surd $ | $ \sin \theta (\cot \theta +\sec \theta )=\cos \theta +\tan \theta $
$ \begin{align}\sin \theta \cot \theta +\sin \theta \sec \theta &=\\\cancel{{\sin \theta }}\frac{{\cos \theta }}{{\cancel{{\sin \theta }}}}+\sin \theta \frac{1}{{\cos \theta }}&=\\\cos \theta +\frac{{\sin \theta }}{{\cos \theta }}&=\cos \theta +\tan \theta \,\surd \end{align}$ | $ \displaystyle \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{1+\cot \theta }}{{1+\tan \theta }}=\cot \theta $ $ \displaystyle \begin{align}\frac{{1+\displaystyle \frac{1}{{\tan \theta }}}}{{1+\tan \theta }}&=\\\displaystyle \frac{{\displaystyle \frac{{\tan \theta }}{{\tan \theta }}+\displaystyle \frac{1}{{\tan \theta }}}}{{1+\tan \theta }}&=\\\displaystyle \frac{{\displaystyle \frac{{\tan \theta +1}}{{\tan \theta }}}}{{1+\tan \theta }}&=\\\frac{{\cancel{{\tan \theta +1}}}}{{\tan \theta }}\times \displaystyle \frac{1}{{\cancel{{1+\tan \theta }}}}&=\\\displaystyle \frac{1}{{\tan \theta }}&=\cot \theta \,\surd \end{align}$ |
Here’s one more that’s pretty tricky! See how important it is to know how to deal with algebra in fractions?
Reciprocal and Quotient Trig Identity | Hints |
$ \displaystyle \frac{{\cos x}}{{1-\tan x}}+\frac{{\sin x}}{{1-\cot x}}=\cos x+\sin x$
$ \begin{align}\frac{{\cos x}}{{1-\displaystyle \frac{{\sin x}}{{\cos x}}}}+\frac{{\sin x}}{{1-\displaystyle \frac{{\cos x}}{{\sin x}}}}&=\\\frac{{\cos x}}{{\displaystyle \frac{{\cos x-\sin x}}{{\cos x}}}}+\frac{{\sin x}}{{\displaystyle \frac{{\sin x-\cos x}}{{\sin x}}}}&=\,\,\,\,\\\frac{{{{{\cos }}^{2}}x}}{{\cos x-\sin x}}+\frac{{{{{\sin }}^{2}}x}}{{\sin x-\cos x}}&=\,\,(\text{flip bottom and multiply)}\\\frac{{{{{\cos }}^{2}}x}}{{\cos x-\sin x}}-\frac{{{{{\sin }}^{2}}x}}{{\cos x-\sin x}}&=\\\frac{{\cancel{{\left( {\cos x-\sin x} \right)}}\left( {\cos x+\sin x} \right)}}{{\cancel{{\cos x-\sin x}}}}&=\cos x\,+\sin x\,\,\,\,\surd \end{align}$ |
|
Pythagorean Identities
The Pythagorean identities are derived from (you guessed it!) the Pythagorean Theorem. Going back to the unit circle, notice that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$:
Pythagorean Identities |
(Note that $ {{\left( {\sin x} \right)}^{2}}$ is written as $ {{\sin }^{2}}x$.) From the first Pythagorean identity, we can derive the other two: $ \begin{align}{{\sin }^{2}}\theta +{{\cos }^{2}}\theta &=1\\\frac{{{{{\sin }}^{2}}\theta }}{{{{{\cos }}^{2}}\theta }}+\frac{{{{{\cos }}^{2}}\theta }}{{{{{\cos }}^{2}}\theta }}&=\frac{1}{{{{{\cos }}^{2}}\theta }}\\{{\tan }^{2}}\theta +1&={{\sec }^{2}}\theta \end{align}$ $ \begin{align}{{\sin }^{2}}\theta +{{\cos }^{2}}\theta &=1\\\frac{{{{{\sin }}^{2}}\theta }}{{{{{\sin }}^{2}}\theta }}+\frac{{{{{\cos }}^{2}}\theta }}{{{{{\sin }}^{2}}\theta }}&=\frac{1}{{{{{\sin }}^{2}}\theta }}\\1+{{\cot }^{2}}\theta &={{\csc }^{2}}\theta \end{align}$ The three Pythagorean Identities are: $ \displaystyle \begin{array}{c}{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\\{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta \end{array}$ |
Here are some examples of solving Pythagorean Identities. To “prove” the identities, we use the following “tricks” if we can:
- Match trig functions; for example, if you have a $ \cos \text{, }{{\cos }^{2}}$, and $ {{\sin }^{2}}$, turn the $ {{\sin }^{2}}$ into $ \left( {1-{{{\cos }}^{2}}} \right)$.
- Use common denominators to combine terms.
- Use conjugates (the first term and then change sign and then second term) to multiply numerator or denominator with two terms (binomials). This will create a difference of two squares to work with.
- (To do this, multiply by 1, or $ \displaystyle \frac{{\text{conjugate}}}{{\text{conjugate}}}$, as shown below.)
- Turn all trig functions into sin and cos if you have other trig functions, such as tan.
Pythagorean Identify Proofs | Hints |
$ \displaystyle \frac{{\csc x}}{{\cos x}}-\frac{{\cos x}}{{\sin x}}\,=\,\tan x$
$ \displaystyle \require{cancel} \begin{align}\frac{1}{{\sin x}}\cdot \frac{1}{{\cos x}}-\frac{{\cos x}}{{\sin x}}&=\\\frac{1}{{\sin x\cos x}}-\frac{{\cos x\cdot \cos x}}{{\sin x\cos x}}&=\\\frac{{1-{{{\cos }}^{2}}x}}{{\sin x\cos x}}&=\\\frac{{{}^{{\sin x}}\cancel{{{{{\sin }}^{2}}x}}}}{{\cancel{{\sin x}}\cos x}}&=\,\tan x\,\,\,\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{{{{\cos }}^{2}}\theta }}{{1+\sin \theta }}\,=\,1-\sin \theta $
$ \displaystyle \begin{align}\frac{{1-{{{\sin }}^{2}}\theta }}{{1+\sin \theta }}\,\,\,&=\\\frac{{\left( {1-\sin \theta } \right)\cancel{{(1+\sin \theta )}}}}{{\cancel{{1+\sin \theta }}}}\,&=\,1-\sin \theta \,\,\,\,\,\,\,\,\surd \end{align}$ |
|
Here are a few more that are more complicated:
Pythagorean Identity Proofs | Hints |
$ \displaystyle \frac{2}{{\sin x}}\,=\,\frac{{\tan x}}{{\sec x+1}}+\frac{{\sec x+1}}{{\tan x}}$
$ \require{cancel} \displaystyle \begin{align}&=\frac{{\tan x}}{{\sec x+1}}\left( {\frac{{\tan x}}{{\tan x}}} \right)+\frac{{\sec x+1}}{{\tan x}}\left( {\frac{{\sec x+1}}{{\sec x+1}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,&=\frac{{{{{\tan }}^{2}}x}}{{\tan x\left( {\sec x+1} \right)}}+\frac{{{{{\left( {\sec x+1} \right)}}^{2}}}}{{\tan x\left( {\sec x+1} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,&=\frac{{{{{\tan }}^{2}}x}}{{\tan x\left( {\sec x+1} \right)}}+\frac{{{{{\sec }}^{2}}x+2\sec x+1}}{{\tan x\left( {\sec x+1} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,&=\frac{{\left( {{{{\tan }}^{2}}x+1} \right)+{{{\sec }}^{2}}x+2\sec x}}{{\tan x\left( {\sec x+1} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,&=\frac{{{{{\sec }}^{2}}x+{{{\sec }}^{2}}x+2\sec x}}{{\tan x\left( {\sec x+1} \right)}}\,\,=\,\frac{{2\sec x\cancel{{\left( {\sec x+1} \right)}}}}{{\tan x\cancel{{\left( {\sec x+1} \right)}}}}\\\frac{2}{{\sin x}}\,\,&=\frac{2}{{\cancel{{\cos x}}}}\cdot \frac{{\cancel{{\cos x}}}}{{\sin x}}\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{1-{{{\tan }}^{2}}y}}{{{{{\cos }}^{2}}y-{{{\sin }}^{2}}y}}\,=\,{{\sec }^{2}}y$
$ \displaystyle \begin{align}\frac{{1-\displaystyle \frac{{{{{\sin }}^{2}}y}}{{{{{\cos }}^{2}}y}}}}{{{{{\cos }}^{2}}y-{{{\sin }}^{2}}y}}\,\,&=\\\displaystyle \frac{{\displaystyle \frac{{{{{\cos }}^{2}}y-{{{\sin }}^{2}}y}}{{{{{\cos }}^{2}}y}}}}{{{{{\cos }}^{2}}y-{{{\sin }}^{2}}y}}\,\,&=\\\frac{{\cancel{{{{{\cos }}^{2}}y-{{{\sin }}^{2}}y}}}}{{{{{\cos }}^{2}}y}}\cdot \displaystyle \frac{1}{{\cancel{{{{{\cos }}^{2}}y-{{{\sin }}^{2}}y}}}}\,\,&=\\\displaystyle \frac{1}{{{{{\cos }}^{2}}y}}\,&=\,\,{{\sec }^{2}}y\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{{{{\cos }}^{4}}\theta -{{{\sin }}^{4}}\theta }}{{{{{\left( {2{{{\cos }}^{2}}\theta -1} \right)}}^{2}}}}=\frac{1}{{1-2{{{\sin }}^{2}}\theta }}$
$ \displaystyle \begin{align}\frac{{\left( {{{{\cos }}^{2}}\theta -{{{\sin }}^{2}}\theta } \right)\cancel{{\left( {{{{\cos }}^{2}}\theta +{{{\sin }}^{2}}\theta } \right)}}}}{{{{{\left( {2{{{\cos }}^{2}}\theta -1} \right)}}^{2}}}}&=\\\frac{{{{{\cos }}^{2}}\theta -\left( {1-{{{\cos }}^{2}}\theta } \right)}}{{{{{\left( {2{{{\cos }}^{2}}\theta -1} \right)}}^{2}}}}&=\\\frac{{2{{{\cos }}^{2}}\theta -1}}{{{{{\left( {2{{{\cos }}^{2}}\theta -1} \right)}}^{2}}}}&=\\\frac{1}{{2{{{\cos }}^{2}}\theta -1}}&=\\\frac{1}{{2\left( {1-{{{\sin }}^{2}}\theta } \right)-1}}&=\frac{1}{{1-2{{{\sin }}^{2}}\theta }}\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{1-\sin x+\cos x}}{{1+\sin x+\cos x}}\,=\,\frac{{\cos x}}{{1+\sin x}}$
$ \displaystyle \begin{align}\frac{{1-\left( {\sin x-\cos x} \right)}}{{1+\left( {\sin x+\cos x} \right)}}\,\cdot \frac{{1+\left( {\sin x-\cos x} \right)}}{{1+\left( {\sin x-\cos x} \right)}}&=\\\frac{{1-{{{\left( {\sin x-\cos x} \right)}}^{2}}}}{{\left( {1+\sin x+\cos x} \right)\left( {1+\sin x-\cos x} \right)}}&=\\\frac{{1-\left( {{{{\sin }}^{2}}x-2\sin x\cos x+{{{\cos }}^{2}}x} \right)}}{{1+2\sin x+{{{\sin }}^{2}}x-{{{\cos }}^{2}}x}}&=\\\frac{{1-\left( {1-2\sin x\cos x} \right)}}{{1+2\sin x+{{{\sin }}^{2}}x-{{{\cos }}^{2}}x}}&=\\\frac{{2\sin x\cos x}}{{\cancel{1}+2\sin x+{{{\sin }}^{2}}x-\left( {\cancel{1}-{{{\sin }}^{2}}x} \right)}}&=\\\frac{{2\sin x\cos x}}{{2\sin x+2{{{\sin }}^{2}}x}}&=\\\frac{{\cancel{{2\sin x}}\cos x}}{{\cancel{{2\sin x}}\left( {1+\sin x} \right)}}&=\frac{{\cos x}}{{1+\sin x}}\,\,\,\surd \end{align}$ |
|
Solving with Reciprocal, Quotient and Pythagorean Identities
Here are some problems where we have use reciprocal and/or Pythagorean identities to Solve Trig Equations in the interval $ \left[ {0,2\pi } \right)$:
Solving with Trig Identities | Hints |
$ \displaystyle 3\cos x+2{{\sin }^{2}}x=3$
$ \displaystyle \begin{align}2{{\sin }^{2}}+3\cos x-3&=0\\2\left( {1-{{{\cos }}^{2}}} \right)+3\cos x-3&=0\\2-2{{\cos }^{2}}+3\cos x-3&=0\\-2{{\cos }^{2}}+3\cos x-1&=0\\2{{\cos }^{2}}-3\cos x+1&=0\\\left( {2\cos x-1} \right)\left( {\cos x-1} \right)&=0\end{align}$
$ \displaystyle \cos x=\frac{1}{2}\,\,\,\,\,\,\,\,\,\,\cos x=1\,\,\,\,\,\,\,\,\,\,x=\left\{ {0,\frac{\pi }{3},\frac{{5\pi }}{3}} \right\}$ |
|
$ \displaystyle \sec x-\tan x=\cot x$
$ \displaystyle \begin{align}\frac{1}{{\cos x}}-\frac{{\sin x}}{{\cos x}}&=\frac{{\cos x}}{{\sin x}}\\\frac{{1-\sin x}}{{\cos x}}-\frac{{\cos x}}{{\sin x}}&=0\\\frac{{\sin x\left( {1-\sin x} \right)}}{{\sin x\cos x}}-\frac{{{{{\cos }}^{2}}x}}{{\sin x\cos x}}&=0\\\frac{{\left( {\sin x-{{{\sin }}^{2}}x-{{{\cos }}^{2}}x} \right)}}{{\sin x\cos x}}&=0\\\left( {\sin x\cancel{{-{{{\sin }}^{2}}x}}-\left( {1\cancel{{-{{{\sin }}^{2}}x}}} \right)} \right)&=0\\\left( {\sin x-1} \right)&=0\,\\\sin x&=1\\x&=\left\{ {\frac{\pi }{2}} \right\}\end{align}$
This is an extraneous solution, since $ \displaystyle \tan \left( {\frac{\pi }{2}} \right)$ is undefined. The answer is no solution or $ \emptyset$. |
$ \displaystyle \sec x=\cot x+\tan x$ $ \require{cancel} \displaystyle \begin{align}{{\sec }^{2}}x&={{\left( {\cot x+\tan x} \right)}^{2}}\\1+{{\tan }^{2}}x&={{\cot }^{2}}x+2\cancel{{\cot x\tan x}}+{{\tan }^{2}}x\\1+{{\tan }^{2}}x&={{\cot }^{2}}x+2+{{\tan }^{2}}x\\1+\cancel{{{{{\tan }}^{2}}x}}&={{\cot }^{2}}x+2+\cancel{{{{{\tan }}^{2}}x}}\\{{\cot }^{2}}x&=-1\end{align}$
No solution, since we can’t square something and have it be a negative number. |
$ \displaystyle \frac{{{{{\cos }}^{2}}\left( x \right)}}{{{{{\sin }}^{2}}\left( x \right)}}=3$
$ \displaystyle \begin{array}{c}{{\cot }^{2}}\left( x \right)=3\\\cot \left( x \right)=\pm \sqrt{3}\end{array}$ $ \displaystyle x=\left\{ {\frac{\pi }{6},\frac{{5\pi }}{6},\frac{{7\pi }}{6},\frac{{11\pi }}{6}} \right\}$ |
|
Here are a few where we have to check for extraneous solutions:
Solving with Trig Identities | Hints |
$ \displaystyle \sin \left( x \right)=\cos \left( x \right)+1$ Interval $ \left[ {0,2\pi } \right)$
$ \displaystyle \begin{array}{c}{{\left[ {\sin \left( x \right)} \right]}^{2}}={{\left[ {\cos \left( x \right)+1} \right]}^{2}}\\{{\sin }^{2}}\left( x \right)={{\cos }^{2}}\left( x \right)+2\cos \left( x \right)+1\\1-{{\cos }^{2}}\left( x \right)={{\cos }^{2}}\left( x \right)+2\cos \left( x \right)+1\\2{{\cos }^{2}}\left( x \right)+2\cos \left( x \right)=0\\2\cos \left( x \right)\left[ {\cos \left( x \right)+1} \right]=0\\\cos \left( x \right)=0\,\,\,\,\,\,\,\cos \left( x \right)=-1\\\,x=\displaystyle \frac{\pi }{2},\cancel{{\displaystyle \frac{{3\pi }}{2}}}\,\,\,\,\,\,\,\,\,\,\,x=\pi \,\,\,\,\,\,\,\,\,x=\left\{ {\displaystyle \frac{\pi }{2},\pi } \right\}\end{array}$ | • Square each side since there’s nothing else obvious to do. There may be extraneous solutions, since we squared each side. • Use $ 1-{{\sin }^{2}}\left( x \right)$ for $ \displaystyle {{\cos }^{2}}\left( x \right)$ since there’s another term with cos. • Since it’s a quadratic, move everything to one side to have 0 on the other side. • Check the solutions; all work except for $ \displaystyle \frac{{3\pi }}{2}:\,\,\,\sin \left( {\frac{{3\pi }}{2}} \right)\ne \cos \left( {\frac{{3\pi }}{2}} \right)+1\,\,\,\,(-1\ne 0+1)$! |
$ \displaystyle \frac{{1-\cos x}}{{\sin x}}=\frac{{\sin x}}{{1+\cos x}}$ General Solution (over Reals)
$ \displaystyle \begin{align}\frac{{1-\cos x}}{{\sin x}}-\frac{{\sin x}}{{1+\cos x}}&=0\\\frac{{\left( {1-\cos x} \right)\left( {1+\cos x} \right)}}{{\left( {\sin x} \right)\left( {1+\cos x} \right)}}-\frac{{\left( {\sin x} \right)\left( {\sin x} \right)}}{{\left( {\sin x} \right)\left( {1+\cos x} \right)}}&=0\\\frac{{1-{{{\cos }}^{2}}x}}{{\left( {\sin x} \right)\left( {1+\cos x} \right)}}-\frac{{{{{\sin }}^{2}}x}}{{\left( {\sin x} \right)\left( {1+\cos x} \right)}}&=0\\\frac{{{{{\sin }}^{2}}x}}{{\left( {\sin x} \right)\left( {1+\cos x} \right)}}-\frac{{{{{\sin }}^{2}}x}}{{\left( {\sin x} \right)\left( {1+\cos x} \right)}}&=0\\0&=0\end{align}$ This appears to be all real numbers, but since we have denominators that can’t be 0, we have to check for those cases. The answer, over the reals, is all real numbers except 0 and $ \boldsymbol{\pi}$, or $ \displaystyle \left\{ {x|\,x\ne 0+2\pi k,\,\pi +2\pi k} \right\}$, which is the same as $ \displaystyle \left\{ {x|\,x\ne \pi k} \right\}$. |
|
Sum and Difference Identities
The sum and difference identities are used to split up angles to find easier values (for example, on the unit circle). The identities are also used in conjunction with other identities to prove and solve trig problems.
Here are the sum and difference identities, and tricks to help you memorize them.
Sum and Difference Identities | Hints |
$ \begin{array}{l}\cos \left( {A+B} \right)=\cos A\cos B-\sin A\sin B\\\cos \left( {A-B} \right)=\cos A\cos B+\sin A\sin B\end{array}$ | To help memorize this, I remember that since cos is even, we have the cos’s together and the sin’s together on the right-hand side. Note that the signs (plus or minus) do not match. (We can’t have everything!) |
$ \begin{array}{l}\sin \left( {A+B} \right)=\sin A\cos B+\cos A\sin B\\\sin \left( {A-B} \right)=\sin A\cos B-\cos A\sin B\end{array}$ | I remember with sin, the sign’s match! But we don’t have the sin’s and cos’s together on the right-hand side. |
$ \displaystyle \tan \left( {A+B} \right)=\frac{{\tan A+\tan B}}{{1-\tan A\tan B}}$ $ \displaystyle \tan \left( {A-B} \right)=\frac{{\tan A-\tan B}}{{1+\tan A\tan B}}$ | This one is tricky to memorize. I remember that the numerator is just adding the two tan’s and the signs do match. The denominator always starts with 1 and we subtract products of tan’s, but the signs do not match. |
Note: From these identities, you may be asked to be familiar with the Odd/Even Identities: $ \displaystyle \begin{array}{l}\text{EVEN: }\,\,\,\text{ }\cos \left( {-x} \right)=\cos \left( x \right)\,\,\,\,\,\,\,\text{ODD:}\,\,\,\,\,\,\sin \left( {-x} \right)=-\sin \left( x \right)\,\,\,\,\,\,\,\tan \left( {-x} \right)=-\tan \left( x \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sec \left( {-x} \right)=\sec \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\csc \left( {-x} \right)=-\csc \left( x \right)\,\,\,\,\,\,\,\cot \left( {-x} \right)=-\cot \left( x \right)\end{array}$ …..and the Cofunction Identities in radians (trig functions of an angle is equal to the value of the cofunction of the complement). Try to prove these using the identities above! $ \displaystyle \begin{align}\sin \left( {\frac{\pi }{2}-x} \right)&=\cos \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\csc \left( {\frac{\pi }{2}-x} \right)=\sec \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\tan \left( {\frac{\pi }{2}-x} \right)=\cot \left( x \right)\\\cos \left( {\frac{\pi }{2}-x} \right)&=\sin \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\sec \left( {\frac{\pi }{2}-x} \right)=\csc \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\cot \left( {\frac{\pi }{2}-x} \right)=\tan \left( x \right)\end{align}$ |
First, simplify and find exact values using the sum and difference identities:
Sum and Difference Identity | Sum and Difference Identity |
Use a sum and difference identity to show that $ \displaystyle \sin \left( {-x} \right)=-\sin \left( x \right)$
Since $ \sin \left( {A-B} \right)=\sin A\cos B-\cos A\sin B$, we have: $ \displaystyle \begin{align}\sin (-x)&=\sin \left( {0-x} \right)=\sin \left( 0 \right)\cos x-\cos \left( 0 \right)\sin x\\&=0\cdot \cos x-1\cdot \sin x\\&=-\sin x\end{align}$ | Use a sum and difference to show that $ \displaystyle \tan \left( {\frac{\pi }{2}-x} \right)=\cot \left( x \right)$ We can’t use the tan difference formula, since $ \displaystyle \tan \left( {\frac{\pi }{2}} \right)$ doesn’t exist. But we can use the sin and cos difference formulas: $ \displaystyle \begin{align}\tan \left( {\frac{\pi }{2}-x} \right)&=\frac{{\sin \left( {\displaystyle \frac{\pi }{2}-x} \right)}}{{\cos \left( {\displaystyle \frac{\pi }{2}-x} \right)}}\\&=\frac{{\sin \left( {\displaystyle \frac{\pi }{2}} \right)\cos x-\cos \left( {\displaystyle \frac{\pi }{2}} \right)\sin x}}{{\cos \left( {\displaystyle \frac{\pi }{2}} \right)\cos x+\sin \left( {\displaystyle \frac{\pi }{2}} \right)\sin x}}\\&=\frac{{1\cdot \cos x-0\cdot \sin x}}{{0\cdot \cos x+1\cdot \sin x}}=\frac{{\cos x}}{{\sin x}}=\cot x\end{align}$ |
Simplify $ \displaystyle \sin \left( {\frac{{4\pi }}{5}} \right)\cos \left( {\frac{{2\pi }}{7}} \right)+\cos \left( {\frac{{4\pi }}{5}} \right)\sin \left( {\frac{{2\pi }}{7}} \right)$ Since $ \sin A\cos B+\cos A\sin B=\sin \left( {A+B} \right)$, we have: $ \displaystyle \begin{align}\sin \left( {\frac{{4\pi }}{5}} \right)\cos \left( {\frac{{2\pi }}{7}} \right)+\cos \left( {\frac{{4\pi }}{5}} \right)\sin \left( {\frac{{2\pi }}{7}} \right)\\=\sin \left( {\frac{{4\pi }}{5}+\frac{{2\pi }}{7}} \right)=\sin \left( {\frac{{38\pi }}{{35}}} \right)\end{align}$ | Find exact value of $ \tan \left( {165{}^\circ } \right)$ Since $ \displaystyle \tan \left( {A+B} \right)=\frac{{\tan A+\tan B}}{{1-\tan A\tan B}}$, we can find two values on the Unit Circle whose sum is 165°: 120° and 45°: $ \begin{align}\tan \left( {165} \right)=\tan \left( {120+45} \right)&=\frac{{\tan 120+\tan 45}}{{1-\left( {\tan 120} \right)\left( {\tan 45} \right)}}\\&=\frac{{-\sqrt{3}+1}}{{1-\left( {-\sqrt{3}} \right)\left( 1 \right)}}\\&=\frac{{1-\sqrt{3}}}{{1+\sqrt{3}}}\end{align}$ |
Find the exact value of $ \displaystyle \cos \left( {\frac{\pi }{{12}}} \right)$ Divide up $ \displaystyle \frac{\pi }{{12}}$ into two fractions that can be found on the Unit Circle: $ \displaystyle \begin{align}\cos \left( {\frac{\pi }{{12}}} \right)&=\cos \left( {\frac{{4\pi }}{{12}}-\frac{{3\pi }}{{12}}} \right)=\cos \left( {\frac{\pi }{3}-\frac{\pi }{4}} \right)\\&=\cos \left( {\frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{4}} \right)+\sin \left( {\frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{4}} \right)\\&=\left( {\frac{1}{2}} \right)\left( {\frac{{\sqrt{2}}}{2}} \right)+\left( {\frac{{\sqrt{3}}}{2}} \right)\left( {\frac{{\sqrt{2}}}{2}} \right)\\&=\frac{{\sqrt{2}+\sqrt{6}}}{4}\end{align}$ | Simplify $ \displaystyle \frac{{\tan \displaystyle \frac{\pi }{{12}}-\tan \displaystyle \frac{{5\pi }}{4}}}{{1+\left( {\tan \displaystyle \frac{{5\pi }}{4}} \right)\left( {\tan \displaystyle \frac{\pi }{{12}}} \right)}}$ Since $ \displaystyle \frac{{\tan A-\tan B}}{{1+\tan A\tan B}}=\tan \left( {A-B} \right)$, we have: $ \displaystyle \begin{align}\frac{{\tan \displaystyle \frac{\pi }{{12}}-\tan \displaystyle \frac{{5\pi }}{4}}}{{1+\left( {\tan \displaystyle \frac{{5\pi }}{4}} \right)\left( {\tan \displaystyle \frac{\pi }{{12}}} \right)}}&=\tan \left( {\displaystyle \frac{\pi }{{12}}-\frac{{5\pi }}{4}} \right)\\&=\,\,\tan \left( {\displaystyle \frac{{-7\pi }}{6}} \right)\end{align}$ |
Find the exact value of $ \displaystyle \sec \left( {-\frac{\pi }{{12}}} \right)$ Divide up $ \displaystyle -\frac{\pi }{{12}}$ into two fractions that can be found on the Unit Circle; use cos first, and then take reciprocal: $ \displaystyle \begin{align}\cos \left( {-\frac{\pi }{{12}}} \right)&=\cos \left( {\frac{{3\pi }}{{12}}-\frac{{4\pi }}{{12}}} \right)=\cos \left( {\frac{\pi }{4}-\frac{\pi }{3}} \right)\\&=\cos \left( {\frac{\pi }{4}} \right)\cos \left( {\frac{\pi }{3}} \right)+\sin \left( {\frac{\pi }{4}} \right)\sin \left( {\frac{\pi }{3}} \right)\\&=\left( {\frac{{\sqrt{2}}}{2}} \right)\left( {\frac{1}{2}} \right)+\left( {\frac{{\sqrt{2}}}{2}} \right)\left( {\frac{{\sqrt{3}}}{2}} \right)\\&=\frac{{\sqrt{2}+\sqrt{6}}}{4}\end{align}$ $ \displaystyle \begin{align}\sec \left( {-\frac{\pi }{{12}}} \right)&=\frac{1}{{\cos \left( {-\displaystyle \frac{\pi }{{12}}} \right)}}\\&=\frac{4}{{\sqrt{2}+\sqrt{6}}}\left( {\frac{{\sqrt{2}-\sqrt{6}}}{{\sqrt{2}-\sqrt{6}}}} \right)\\&=\sqrt{6}-\sqrt{2}\end{align}$ | Find the exact value of $ \displaystyle \cot \left( {-\frac{{5\pi }}{{12}}} \right)$ Divide up $ \displaystyle -\frac{{5\pi }}{{12}}$ into two fractions that can be found on the Unit Circle; use tan first, and then take the reciprocal: $ \displaystyle \begin{align}\tan \left( {-\frac{{5\pi }}{{12}}} \right)&=\tan \left( {-\displaystyle \frac{{2\pi }}{{12}}+-\frac{{3\pi }}{{12}}} \right)\\&=\tan \left( {-\displaystyle \frac{\pi }{6}+-\displaystyle \frac{\pi }{4}} \right)\\&=\frac{{\tan \left( {-\displaystyle \frac{\pi }{6}} \right)+\tan \left( {-\displaystyle \frac{\pi }{4}} \right)}}{{1-\tan \left( {-\displaystyle \frac{\pi }{6}} \right)\tan \left( {-\displaystyle \frac{\pi }{4}} \right)}}\\&=\displaystyle \frac{{\left( {\displaystyle \frac{{-1}}{{\sqrt{3}}}} \right)+\left( {-1} \right)}}{{1-\left( {\displaystyle \frac{{-1}}{{\sqrt{3}}}} \right)\left( {-1} \right)}}\\&=\frac{{-\displaystyle \frac{1}{{\sqrt{3}}}+-\frac{{\displaystyle \sqrt{3}}}{{\sqrt{3}}}}}{{\displaystyle \frac{{\sqrt{3}}}{{\sqrt{3}}}-\displaystyle \frac{1}{{\sqrt{3}}}}}=\frac{{-\displaystyle \sqrt{3}-1}}{{\sqrt{3}-1}}\end{align}$ $ \displaystyle \cot \left( {-\frac{{5\pi }}{{12}}} \right)=\frac{1}{{\tan \left( {-\displaystyle\frac{{5\pi }}{{12}}} \right)}}=\frac{{1-\sqrt{3}}}{{1+\sqrt{3}}}$ |
Here are some sum and difference identity proofs. The last two are quite tricky!
Sum and Difference Identity Proofs | |
$ \displaystyle \cos \left( {x+\pi } \right)=-\cos x$
$ \displaystyle \begin{align}\cos x\cos \pi -\sin x\sin \pi &=\\\left( {\cos x} \right)\left( {-1} \right)-\left( {\sin x} \right)\left( 0 \right)&=\\\left( {\cos x} \right)\left( {-1} \right)-0&=-\cos x\,\,\surd \end{align}$
Note: Evaluate any expressions that turn into constants (like $ \sin \pi $). | $ \displaystyle \sin \left( {\alpha +\beta } \right)\sin \left( {\alpha -\beta } \right)={{\sin }^{2}}\alpha -{{\sin }^{2}}\beta $
$ \displaystyle \begin{align}\left( {\sin \alpha \cos \beta +\cos \alpha \sin \beta } \right)\left( {\sin \alpha \cos \beta -\cos \alpha \sin \beta } \right)&=\\{{\left( {\sin \alpha \cos \beta } \right)}^{2}}-{{\left( {\cos \alpha \sin \beta } \right)}^{2}}&=\\\left( {{{{\sin }}^{2}}\alpha } \right)\left( {{{{\cos }}^{2}}\beta } \right)-\left( {{{{\cos }}^{2}}\alpha } \right)\left( {{{{\sin }}^{2}}\beta } \right)&=\\\left( {{{{\sin }}^{2}}\alpha } \right)\left( {1-{{{\sin }}^{2}}\beta } \right)-\left( {1-{{{\sin }}^{2}}\alpha } \right)\left( {{{{\sin }}^{2}}\beta } \right)&=\\{{\sin }^{2}}\alpha -\cancel{{\left( {{{{\sin }}^{2}}\alpha } \right)\left( {{{{\sin }}^{2}}\beta } \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\-\,\,{{\sin }^{2}}\beta +\cancel{{\left( {{{{\sin }}^{2}}\alpha } \right)\left( {{{{\sin }}^{2}}\beta } \right)}}&={{\sin }^{2}}\alpha -{{\sin }^{2}}\beta \,\,\surd \end{align}$
Note: We knew to eventually turn everything into sin, since the right-hand side of the identity only had sin in it. |
$ \displaystyle \frac{{\sin \left( {x+y} \right)}}{{\sin x\cos y}}=\cot x\tan y+1$
$ \displaystyle \begin{align}\frac{{\sin x\cos y+\cos x\sin y}}{{\sin x\cos y}}&=\\\frac{{\sin x\cos y}}{{\sin x\cos y}}+\frac{{\cos x\sin y}}{{\sin x\cos y}}&=\\1+\frac{{\cos x}}{{\sin x}}\cdot \frac{{\sin y}}{{\cos y}}&=\cot x\tan y+1\,\,\surd \end{align}$
Note: We had to split the fraction on the left to get to the two terms on the right. | $ \displaystyle \sec \left( {x-y} \right)=\frac{{\sec x\sec y}}{{\tan x\tan y+1}}$
$ \displaystyle \begin{align}&=\frac{{\displaystyle \frac{1}{{\cos x}}\cdot \displaystyle \frac{1}{{\cos y}}}}{{\displaystyle \frac{{\sin x}}{{\cos x}}\cdot \displaystyle \frac{{\sin y}}{{\cos y}}+1}}\\&=\frac{{\displaystyle \frac{1}{{\cos x\cos y}}}}{{\displaystyle \frac{{\sin x\sin y}}{{\cos x\cos y}}+1}}=\displaystyle \frac{{\displaystyle \frac{1}{{\cos x\cos y}}}}{{\displaystyle \frac{{\sin x\sin y}}{{\cos x\cos y}}+\frac{{\cos x\cos y}}{{\cos x\cos y}}}}\\\text{(flip & multiply)}\,\,\,\,&=\displaystyle \frac{1}{{\cancel{{\cos x\cos y}}}}\cdot \displaystyle \frac{{\cancel{{\cos x\cos y}}}}{{\sin x\sin y+\cos x\cos y}}\\&=\displaystyle \frac{1}{{\sin x\sin y+\cos x\cos y}}\\\sec \left( {x-y} \right)&=\displaystyle \frac{1}{{\cos \left( {x-y} \right)}}\,\,\surd \end{align}$
Note: Start with the more complicated side and turn everything into sin and cos. |
Solving with Sum and Difference Identities
Here are some problems where we use Sum and Difference identities to Solve Trig Equations in the indicated interval:
Solving Sum and Difference Identity Trig Equations | |
$ \displaystyle \cos \left( {3x} \right)\cos 15{}^\circ +\sin \left( {3x} \right)\sin 15{}^\circ =\frac{1}{2}$, interval $ \left[ {0,360{}^\circ } \right)$ $ \displaystyle \cos \left( {3x-15} \right)=\frac{1}{2}$ First solve over reals and then see how many of these solutions are in $ \left[ {0,360{}^\circ } \right)$: $ \displaystyle \begin{array}{c}3x-15=60{}^\circ +360{}^\circ k\,\,\,\,\,\,\,\,3x-15=300{}^\circ +360{}^\circ k\\3x=75{}^\circ +360{}^\circ k\,\,\,\,\,\,\,\,\,\,\,\,3x=315{}^\circ +360{}^\circ k\\\,x=25{}^\circ +120{}^\circ k\,\,\,\,\,\,\,\,\,\,\,\,\,x=105{}^\circ +120{}^\circ k\\\\\left\{ {x|x=25{}^\circ ,105{}^\circ ,145{}^\circ ,225{}^\circ ,265{}^\circ ,345{}^\circ } \right\}\end{array}$ | $ \displaystyle \sin \left( {\frac{x}{4}} \right)\cos x-\cos \left( {\frac{x}{4}} \right)\sin x+1=0$, over the reals $ \displaystyle \sin \left( {\frac{x}{4}-x} \right)=-1$ $ \begin{align}-\frac{{3x}}{4}&=\frac{{3\pi }}{2}+2\pi k\\-3x&=6\pi +8\pi k\\x&=\frac{{6\pi }}{{-3}}+\frac{{8\pi }}{{-3}}k\end{align}$ $ \displaystyle \left\{ {x|x=-2\pi -\frac{{8\pi }}{3}k} \right\}$ |
$ \displaystyle \tan \left( {3x} \right)-\tan 63{}^\circ =\sqrt{3}+\sqrt{3}\tan \left( {3x} \right)\tan {{63}^{{}^\circ }}$, over the reals $ \displaystyle \begin{align}\tan \left( {3x} \right)-\tan {{63}^{{}^\circ }}&=\sqrt{3}\left( {1+\tan \left( {3x} \right)\tan {{{63}}^{{}^\circ }}} \right)\\\frac{{\tan \left( {3x} \right)-\tan {{{63}}^{{}^\circ }}}}{{1+\tan \left( {3x} \right)\tan {{{63}}^{{}^\circ }}}}&=\sqrt{3}\\\tan \left( {3x-{{{63}}^{{}^\circ }}} \right)&=\sqrt{3}\\\\3x-{{63}^{{}^\circ }}&={{60}^{{}^\circ }}+{{180}^{{}^\circ }}k\\3x&={{123}^{{}^\circ }}+{{180}^{{}^\circ }}k\\x&=\frac{{{{{123}}^{{}^\circ }}}}{3}+\frac{{{{{180}}^{{}^\circ }}k}}{3}\end{align}$
$ \displaystyle \left\{ {x|x=41{}^\circ +60{}^\circ k} \right\}$
| $ \displaystyle 2\cos \left( {x+\frac{\pi }{6}} \right)\cos \left( {x-\frac{\pi }{6}} \right)=1$, interval $ \left[ {0,2\pi } \right)$ $ \displaystyle \begin{align}\cos \left( {x+\frac{\pi }{6}} \right)\cos \left( {x-\frac{\pi }{6}} \right)&=\frac{1}{2}\\\left( {\cos x\cos \frac{\pi }{6}-\sin x\sin \frac{\pi }{6}} \right)\left( {\cos x\cos \frac{\pi }{6}+\sin x\sin \frac{\pi }{6}} \right)&=\frac{1}{2}\\\left( {\frac{{\sqrt{3}}}{2}\cos x-\frac{1}{2}\sin x} \right)\left( {\frac{{\sqrt{3}}}{2}\cos x+\frac{1}{2}\sin x} \right)&=\frac{1}{2}\\\frac{3}{4}{{\cos }^{2}}x-\frac{1}{4}{{\sin }^{2}}x&=\frac{1}{2}\\\frac{3}{4}\left( {1-{{{\sin }}^{2}}x} \right)-\frac{1}{4}{{\sin }^{2}}x&=\frac{1}{2}\\3-3{{\sin }^{2}}x-{{\sin }^{2}}x&=2\end{align}$ $ \displaystyle \begin{array}{c}-4{{\sin }^{2}}x=-1;\,\,{{\sin }^{2}}x=\displaystyle \frac{1}{4}\\\sin x=\pm \displaystyle\frac{1}{2}\end{array}$ $ \displaystyle x=\left\{ {\frac{\pi }{6},\frac{{5\pi }}{6},\frac{{7\pi }}{6},\frac{{11\pi }}{6}} \right\}$ |
Here’s one with a coterminal identity: $ \displaystyle \frac{{\cot \left( {90{}^\circ -x} \right)}}{{1-{{{\tan }}^{2}}x}}=\frac{{\sqrt{3}}}{2}$, interval $ \left[ {0,360{}^\circ } \right)$ $ \begin{align}\frac{{\cot \left( {90{}^\circ -x} \right)}}{{1-{{{\tan }}^{2}}x}}&=\frac{{\tan x}}{{1-{{{\tan }}^{2}}x}}=\frac{{\sqrt{3}}}{2}\\\,\,\frac{{2\tan x}}{{1-{{{\tan }}^{2}}x}}&=\sqrt{3}\\\tan \left( {2x} \right)&=\sqrt{3}\,\,\,\,\left( {\text{(double angle identity}} \right)\end{align}$
$ \begin{array}{c}2x=60{}^\circ +180{}^\circ k\\x=30{}^\circ +90{}^\circ k\\\\\left\{ {x|x=30{}^\circ ,120{}^\circ ,210{}^\circ ,300{}^\circ } \right\}\end{array}$ | Here’s one with odd/even identities: $ \cos \left( {-4x} \right)+\sin \left( {-2x} \right)=0$, over the reals $ \displaystyle \begin{array}{c}\cos \left( {-4x} \right)+\sin \left( {-2x} \right)=\cos \left( {4x} \right)-\sin \left( {2x} \right)=0\\1-2{{\sin }^{2}}\left( {2x} \right)-\sin \left( {2x} \right)=0\,\,\,\,\left( {\text{use identity with sin in it}} \right)\\2{{\sin }^{2}}\left( {2x} \right)+\sin \left( {2x} \right)-1=0\\\left( {2\sin \left( {2x} \right)-1} \right)\left( {\sin \left( {2x} \right)+1} \right)=0\end{array}$
$ \displaystyle \sin \left( {2x} \right)=\frac{1}{2};\,\,\,\,\sin \left( {2x} \right)=-1$ $ \displaystyle 2x=\frac{\pi }{6}+2\pi k\,\,\,\,\,\,\,\,\,2x=\frac{{5\pi }}{6}+2\pi k\,\,\,\,\,\,\,\,\,2x=\frac{{3\pi }}{2}+2\pi k$ $ \displaystyle \left\{ {x|x=\frac{\pi }{{12}}+\pi k,\,\,\frac{{5\pi }}{{12}}+\pi k,\,\,\frac{{3\pi }}{4}+\pi k\,\,} \right\}$ |
Double Angle and Half Angle Identities
The double angle and half angle identities are used to split up angles to make easier values (for example, on the unit circle). The identities are also used in conjunction with other identities to prove and solve trig problems.
Here are the double angle and half angle identities, and tricks to help you memorize them:
Double and Half Angle Identities | Hints |
$ \begin{align}\sin \left( {2A} \right)&=2\sin A\cos A\\\\\cos \left( {2A} \right)&={{\cos }^{2}}A-{{\sin }^{2}}A\\&=1-2{{\sin }^{2}}A\\&=2{{\cos }^{2}}A-1\\\\\tan \left( {2A} \right)&=\frac{{2\tan A}}{{1-{{{\tan }}^{2}}A}}\end{align}$ | $ \sin \left( {2A} \right)$ is pretty easy to remember; just take the “2” out and put it in front of a sin and cos.
$ \cos \left( {2A} \right)$ is a little more complicated, especially since it can be written in three ways. I memorize the $ {{\cos }^{2}}A-{{\sin }^{2}}A$ part and then remember that I can use the Pythagorean Identity $ {{\sin }^{2}}A+{{\cos }^{2}}A=1$ to substitute and do the algebra to arrive at the other expressions.
For $ \tan \left( {2A} \right)$, the identity only has tan’s in it, with the “2” in the numerator, and the $ 1-{{\tan }^{2}}A$ in the denominator (or you can derive it from the sum identity above: $ \tan \left( {2A} \right)=\tan \left( {A+A} \right)=\displaystyle \frac{{\tan A+\tan A}}{{1-\left( {\tan A} \right)\left( {\tan A} \right)}}=\displaystyle \frac{{2\tan A}}{{1-{{{\tan }}^{2}}A}}$.) |
$ \displaystyle \begin{align}\sin \left( {\frac{A}{2}} \right)&=\pm \sqrt{{\frac{{1-\cos A}}{2}}}=\pm \sqrt{{\frac{1}{2}\left( {1-\cos A} \right)}}\\\\\cos \left( {\frac{A}{2}} \right)&=\pm \sqrt{{\frac{{1+\cos A}}{2}}}=\pm \sqrt{{\frac{1}{2}\left( {1+\cos A} \right)}}\\\\\tan \left( {\frac{A}{2}} \right)&=\frac{{\sin A}}{{1+\cos A}}=\frac{{1-\cos A}}{{\sin A}}\end{align}$ | These are a little more complicated. For the $ \displaystyle \sin \left( {\frac{A}{2}} \right)$ and $ \displaystyle \cos \left( {\frac{A}{2}} \right)$, they both contain a cos, and the cos half angle has the plus sign inside the radical.
The tricky thing is that the sign of the whole identity depends on the quadrant where the angle $ \displaystyle \boldsymbol{\frac{A}{2}}$ is (not angle $ A$, but $ \displaystyle \frac{A}{2}$). For example, for $ \displaystyle \sin \left( {\frac{A}{2}} \right)$, if $ \displaystyle \frac{A}{2}$ is in the first or second quadrants, use $ \displaystyle +\sqrt{{\frac{{1-\cos A}}{2}}}$, and if $ \displaystyle \frac{A}{2}$ is in the third or fourth quadrants, use $ \displaystyle -\sqrt{{\frac{{1-\cos A}}{2}}}$. Similarly for $ \displaystyle \cos \left( {\frac{A}{2}} \right)$, if $ \displaystyle \frac{A}{2}$ is in the first or fourth quadrants, use $ \displaystyle +\sqrt{{\frac{{1+\cos A}}{2}}}$, and if $ \displaystyle \frac{A}{2}$ is in the second or third quadrants, use $ \displaystyle -\sqrt{{\frac{{1+\cos A}}{2}}}$.
For $ \displaystyle \tan \left( {\frac{A}{2}} \right)$, you’ll want to memorize both parts of the identity, but you can derive the second part by multiplying the first by $ \displaystyle \frac{{1-\cos A}}{{1-\cos A}}$ (use conjugate of denominator). |
Here are some double and half angle identity proofs. Notice how we always try to start on the more complicated side.
Double and Half Angle Identity Proofs | |
$ \displaystyle \frac{{\sin \left( {2x} \right)}}{2}=\frac{{\tan x}}{{{{{\tan }}^{2}}x+1}}$
$ \require{cancel} \displaystyle \begin{align}&=\frac{{\tan x}}{{{{{\sec }}^{2}}x}}\\&=\frac{{\sin x}}{{\cancel{{\cos x}}}}\cdot \frac{{{{{\cancel{{{{{\cos }}^{2}}x}}}}^{{\cos x}}}}}{1}\\&=\sin x\cos x\\&=\sin x\cos x\cdot \frac{2}{2}\\\frac{{\sin \left( {2x} \right)}}{2}&=\frac{{2\sin x\cos x}}{2}\,\,\,\,\,\surd \end{align}$
Note: To get $ \displaystyle \sin x\cos x$ into the right form for the identity $ \displaystyle (2\sin x\cos x)$, we had to multiply by $ \displaystyle \frac{2}{2}$. | $ \displaystyle \frac{{1-\cos \left( {2A} \right)}}{{\sin \left( {2A} \right)}}=\tan A$ $ \displaystyle \begin{align}\frac{{1-\left( {1-2{{{\sin }}^{2}}A} \right)}}{{\sin \left( {2A} \right)}}&=\\\frac{{2{{{\sin }}^{2}}A}}{{\sin \left( {2A} \right)}}&=\\\frac{{{}^{{\sin A}}\cancel{{2{{{\sin }}^{2}}A}}}}{{\cancel{{2\sin A}}\cos A}}&=\tan A\,\,\,\,\,\surd \end{align}$
Note: We knew to use the $ \displaystyle 1-2{{\sin }^{2}}A$ (instead of $ \displaystyle 2{{\cos }^{2}}A-1$) for $ \cos 2A$ to get rid of the 1’s. |
$ \displaystyle \tan \left( {\frac{1}{2}\theta } \right)=\csc \theta -\cot \theta $
$ \displaystyle \begin{align}&=\frac{1}{{\sin \theta }}-\frac{{\cos \theta }}{{\sin \theta }}\\\tan \left( {\frac{1}{2}\theta } \right)&=\frac{{1-\cos \theta }}{{\sin \theta }}\,\,\,\,\,\surd \end{align}$
Note: Start from the right-hand side, and turn everything into sin and cos since the Half Angle tan identity is written in terms of sin and cos. | $ \displaystyle \frac{{\cos \left( {2\theta } \right)}}{{\cos \theta -\sin \theta }}=\cos \theta +\sin \theta $
$ \displaystyle \begin{align}\frac{{{{{\cos }}^{2}}\theta -{{{\sin }}^{2}}\theta }}{{\cos \theta -\sin \theta }}&=\\\frac{{\cancel{{\left( {\cos \theta -\sin \theta } \right)}}\left( {\cos \theta +\sin \theta } \right)}}{{\cancel{{\cos \theta -\sin \theta }}}}&=\cos \theta +\sin \theta \,\,\,\,\,\surd \end{align}$
Note: We knew to use $ \displaystyle {{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ and difference of squares for $ \cos 2\theta $ since the denominator contains both cos and sin. |
$ \displaystyle \frac{{1-\sin \left( {2\theta } \right)}}{{\cos \left( {2\theta } \right)}}=\frac{{1-\tan \theta }}{{1+\tan \theta }}$
$ \displaystyle \begin{align}&=\frac{{1-\displaystyle \displaystyle \frac{{\sin \theta }}{{\cos \theta }}}}{{1+\displaystyle \frac{{\sin \theta }}{{\cos \theta }}}}=\displaystyle \frac{{\displaystyle \frac{{\cos \theta }}{{\cos \theta }}-\displaystyle \frac{{\sin \theta }}{{\cos \theta }}}}{{\displaystyle \frac{{\cos \theta }}{{\cos \theta }}+\displaystyle \frac{{\displaystyle \sin \theta }}{{\cos \theta }}}}=\displaystyle \frac{{\displaystyle \frac{{\cos \theta -\sin \theta }}{{\cos \theta }}}}{{\displaystyle \frac{{\cos \theta +\sin \theta }}{{\cos \theta }}}}\\&=\displaystyle \frac{{\cos \theta -\sin \theta }}{{\cos \theta +\sin \theta }}\cdot \displaystyle \frac{{\cos \theta -\sin \theta }}{{\cos \theta -\sin \theta }}\\&=\displaystyle \frac{{{{{\cos }}^{2}}\theta -2\sin \theta \cos \theta +{{{\sin }}^{2}}\theta }}{{{{{\cos }}^{2}}\theta -{{{\sin }}^{2}}\theta }}\\&=\displaystyle \frac{{1-2\sin \theta \cos \theta }}{{\cos \left( {2\theta } \right)}}\\\displaystyle \frac{{1-\sin \left( {2\theta } \right)}}{{\cos \left( {2\theta } \right)}}&=\displaystyle \frac{{1-\sin \left( {2\theta } \right)}}{{\cos \left( {2\theta } \right)}}\,\,\,\,\,\,\,\,\surd \end{align}$
Note: The right-hand side looked a little more complicated, so we started there. We turned tan into sin and cos and simplified first. Then we multiplied by 1, using the conjugate of the bottom; this got us the double angle identity for $ \displaystyle \cos \left( {2\theta } \right)$ in the denominator. We also used the Pythagorean Identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1$. | $ \displaystyle \frac{{\cos \left( {2x} \right)+\cos x}}{{\sin \left( {2x} \right)-\sin x}}=\frac{{\sin x}}{{1-\cos x}}$
$ \displaystyle \begin{align}\frac{{2{{{\cos }}^{2}}x-1+\cos x}}{{2\sin x\cos x-\sin x}}&=\\\frac{{\cancel{{\left( {2\cos x-1} \right)}}\left( {\cos x+1} \right)}}{{\sin x\cancel{{\left( {2\cos x-1} \right)}}}}&=\\\frac{{\cos x+1}}{{\sin x}}\cdot \frac{{\cos x-1}}{{\cos x-1}}&=\\\frac{{{{{\cos }}^{2}}x-1}}{{\sin x\left( {\cos x-1} \right)}}&=\\\frac{{{{{\cancel{{-{{{\sin }}^{2}}x}}}}^{{-\sin x}}}}}{{\cancel{{\sin x}}\left( {\cos x-1} \right)}}&=\frac{{\sin x}}{{1-\cos x}}\,\,\,\,\,\,\surd \end{align}$
Note: We knew to use the $ \displaystyle 2{{\cos }^{2}}A-1$ for $ \cos 2A$ because of the cos in the numerator; then we could factor. We multiplied by 1, using the conjugate of the numerator, and had to use the Pythagorean identity to cancel out the sin’s. Tricky! |
$ \displaystyle -\sec \left( {2x} \right)=\frac{{{{{\sec }}^{2}}x}}{{\sec {{x}^{2}}-2}}$
$ \displaystyle \begin{align}&=\frac{{\displaystyle \frac{1}{{{{{\cos }}^{2}}x}}}}{{\displaystyle \frac{1}{{{{{\cos }}^{2}}x}}-2}}\\&=\displaystyle \frac{{\displaystyle \frac{1}{{\cancel{{{{{\cos }}^{2}}x}}}}}}{{\displaystyle \frac{{1-2{{{\cos }}^{2}}x}}{{\cancel{{{{{\cos }}^{2}}x}}}}}}\\&=\displaystyle \frac{1}{{1-2{{{\cos }}^{2}}x}}=\,-\displaystyle \frac{1}{{2{{{\cos }}^{2}}x-1}}\\\,-\sec \left( {2x} \right)&=-\displaystyle \frac{1}{{\displaystyle \frac{1}{{2{{{\cos }}^{2}}x-1}}}}\,\,\,\surd \end{align}$
Note: We knew to put everything in terms of cos on the right and then use the reciprocal of the $ \cos \left( {2x} \right)$ identity to get $ \sec \left( {2x} \right)$. | $ \displaystyle \frac{{\cos 2x-4\cos x-5}}{{\sin 2x-6\sin x}}=\cot x+\csc x$
$ \displaystyle \begin{align}\frac{{2{{{\cos }}^{2}}x-1-4\cos x-5}}{{2\sin x\cos x-6\sin x}}&=\\\frac{{2{{{\cos }}^{2}}x-4\cos x-6}}{{2\sin x\left( {\cos x-3} \right)}}&=\\\frac{{\left( {2\cos x+2} \right)\cancel{{\left( {\cos x-3} \right)}}}}{{2\sin x\cancel{{\left( {\cos x-3} \right)}}}}&=\\\frac{{2\cos x}}{{2\sin x}}+\frac{2}{{2\sin x}}&=\cot x+\csc x\,\,\,\surd \end{align}$
Note: We knew to put everything in terms of cos on the top so we could factor; it worked out that we could simplify after factoring. Pretty cool! |
Here’s one more that’s difficult; sometimes it’s easier to start down both sides to see how to prove the identity:
Half Angle Identify Proof | Hints |
$ \displaystyle \cot \left( {\frac{x}{2}} \right)\,=\,\frac{{\tan x\cos x}}{{2{{{\sin }}^{2}}\left( {\frac{x}{2}} \right)}}$
$ \displaystyle \begin{align}\color{#804040}{{\frac{1}{{\tan \left( {\displaystyle \frac{x}{2}} \right)}}}}&=\frac{{\displaystyle \frac{{\sin x}}{{\cancel{{\cos x}}}}\cancel{{\cos x}}}}{{2\cdot {{{\left( {\pm \sqrt{{\displaystyle \frac{{1-\cos x}}{2}}}} \right)}}^{2}}}}\\\color{#804040}{{\frac{{\sin x}}{{1-\cos x}}}}&=\frac{{\sin x}}{{\cancel{2}\cdot \displaystyle \frac{{1-\cos x}}{{\cancel{2}}}}}\\&=\displaystyle \frac{{\sin x}}{{1-\cos x}}\\&=\displaystyle \frac{1}{{\tan \left( {\displaystyle \frac{x}{2}} \right)}}=\cot \left( {\displaystyle \frac{x}{2}} \right)\,\,\,\,\,\,\surd \end{align}$ |
|
Now let’s use these identities to find exact values for the following expressions using triangles, similar to what we did here in the in The Inverse Trigonometric Functions section:
Double and Half Angle “Triangle” Identity Problems |
Find an expression for $ \displaystyle \cos \left( {\frac{A}{2}} \right)$, given $ \displaystyle \sin A=-\frac{3}{5}$ and $ \displaystyle\frac{{3\pi }}{2}<A<2\pi $: Since $ \displaystyle \cos \left( {\frac{A}{2}} \right)=\pm \sqrt{{\frac{{1+\cos A}}{2}}}$, we need to get $ \cos A$, and then find the quadrant of $ \displaystyle \cos \left( {\frac{A}{2}} \right)$ to get the correct sign. Draw the triangle in the 4th Quadrant, making sure the signs of the values are correct. From the triangle, $ \displaystyle \pm \sqrt{{\frac{{1+\cos A}}{2}}}=\pm \sqrt{{\frac{{1+\frac{4}{5}}}{2}}}=\pm \sqrt{{\frac{9}{{10}}}}$. But since angle A is between $ \displaystyle \frac{{3\pi }}{2}$ and $ \displaystyle 2\pi $, angle $ \displaystyle \frac{A}{2}$ will be between $ \displaystyle \frac{{3\pi }}{4}$ and $ \displaystyle \pi $, which is in the 2nd quadrant (you have to think of these positive angles going counter-clockwise from 0, or the positive $ x$-axis). In the 2nd quadrant, cos is negative. So, $ \displaystyle \cos \left( {\frac{A}{2}} \right)=-\sqrt{{\frac{9}{{10}}}}$. |
Find an expression for $ \cot \left( {2A} \right)$, given $ \displaystyle \tan A=\frac{2}{7}$ and $ \displaystyle \pi <A<\frac{{3\pi }}{2}$: Since $ \displaystyle \tan \left( {2A} \right)=\frac{{2\tan A}}{{1-{{{\tan }}^{2}}A}}$, $ \displaystyle \cot \left( {2A} \right)=\frac{1}{{\displaystyle \frac{{2\tan A}}{{1-{{{\tan }}^{2}}A}}}}=\frac{{1-{{{\tan }}^{2}}A}}{{2\tan A}}$ (the reciprocal). We can just use $ \tan A$ and plug in. Draw the triangle in the 3rd Quadrant, making sure the signs of the values are correct. Plug in the values for tan, noting that cot should be is positive in the 3rd quadrant: $ \displaystyle \cot \left( {2A} \right)=\frac{{1-{{{\left( {\displaystyle \frac{2}{7}} \right)}}^{2}}}}{{2\left( {\displaystyle \frac{2}{7}} \right)}}=\frac{{45}}{{28}}$. |
Find an expression for $ \displaystyle \sin \left( {\frac{A}{2}} \right)$, given $ \displaystyle \tan A=-\frac{1}{5}$ and $ \displaystyle \frac{\pi }{2}<A<\pi $: Since $ \displaystyle \sin \left( {\frac{A}{2}} \right)=\pm \sqrt{{\frac{{1-\cos A}}{2}}}$, we need to get $ \cos A$, and then find the quadrant of $ \displaystyle \sin \left( {\frac{A}{2}} \right)$ to get the correct sign. Draw the triangle in the 2nd Quadrant, making sure the signs of the values are correct. From the triangle, $ \displaystyle \begin{align}\sin \left( {\frac{A}{2}} \right)&=\pm \sqrt{{\frac{{1-\cos A}}{2}}}=\pm \sqrt{{\frac{{1-\displaystyle \frac{{-5}}{{\sqrt{{26}}}}}}{2}}}=\pm \sqrt{{\frac{{\displaystyle \frac{{\sqrt{{26}}}}{{\sqrt{{26}}}}-\frac{{-5}}{{\sqrt{{26}}}}}}{2}}}\\&=\pm \sqrt{{\displaystyle \frac{{\sqrt{{26}}+5}}{{2\sqrt{{26}}}}}}=\pm \sqrt{{\displaystyle \frac{{\sqrt{{26}}+5}}{{2\sqrt{{26}}}}}}\cdot \displaystyle \frac{{\sqrt{{26}}}}{{\sqrt{{26}}}}=\pm \sqrt{{\frac{{26+5\sqrt{{26}}}}{{52}}}}\end{align}$. Since angle A is between $ \displaystyle \frac{\pi }{2}$ and $ \displaystyle \pi $, angle $ \displaystyle \frac{A}{2}$ will be between $ \displaystyle \frac{\pi }{4}$ and $ \displaystyle \frac{\pi }{2}$, which is in the 1st quadrant (you have to think of these positive angles going counter-clockwise from 0, or the positive $ x$-axis). So, $ \displaystyle \sin \left( {\frac{A}{2}} \right)=\,\,\sqrt{{\frac{{26+5\sqrt{{26}}}}{{52}}}}$. |
Solving with Double and Half Angle Identities
Here are some problems where we have to use Double and Half Angle identities to Solve Trig Equations in the indicated interval:
Solving Trig Equations with Double and Half Angle Identities | |
$ \displaystyle {{\cos }^{2}}\left( {\frac{x}{2}} \right)=\cos x+1$, over the reals
$ \displaystyle \begin{align}{{\cos }^{2}}\left( {\frac{x}{2}} \right)-\cos x-1&=0\\{{\left( {\pm \sqrt{{\frac{{1+\cos x}}{2}}}} \right)}^{2}}-\cos x-1&=0\\\frac{{1+\cos x}}{2}-\cos x-1&=0\\1+\cos x-2\cos x-2&=0\\\cos x&=-1\end{align}$
$ \displaystyle \left\{ {x|x=\pi +2\pi k} \right\}$ | $ \displaystyle \frac{{1+\cos \theta }}{{\sin x}}+1=0$, interval $ \left[ {0,2\pi } \right)$
$ \displaystyle \begin{align}\frac{1}{{\left( {\displaystyle \frac{{\sin \theta }}{{1+\cos \theta }}} \right)}}&=-1\\\frac{1}{{\tan \left( {\displaystyle \frac{\theta }{2}} \right)}}&=-1;\,\,\,\cot \left( {\frac{\theta }{2}} \right)=-1\end{align}$ $ \displaystyle \frac{\theta }{2}=\frac{{3\pi }}{4}+\pi k\,\,\,\,\,\,\,\,\theta =\frac{{3\pi }}{2}+2\pi k$ $ \displaystyle \theta =\left\{ {\frac{{3\pi }}{2}} \right\}$ Remember from Trig Solving of Multiple Angles, if the coefficient in the trig argument isn’t 1 (we have $ \displaystyle \frac{1}{2}$), we have to check for reals first, and then narrow down to $ \left[ {0,2\pi } \right)$ interval. |
$ \displaystyle \cos \left( {2A} \right)+\cos A=0$, over the reals
$ \displaystyle \begin{align}2{{\cos }^{2}}A-1+\cos A&=0\\2{{\cos }^{2}}A+\cos A-1&=0\\\left( {2\cos A-1} \right)\left( {\cos A+1} \right)&=0\end{align}$ $ \displaystyle \cos A=\frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\cos A=-1$ $ \displaystyle \left\{ {A|A=\frac{\pi }{3}+2\pi k,\,\,\frac{{5\pi }}{3}+2\pi k,\,\,\pi +2\pi k} \right\}$ | $ \displaystyle \sin \left( {2x} \right)-\cos x=0$, interval $ \left[ {0,2\pi } \right)$
$ \displaystyle \begin{align}2\sin x\cos x-\cos x&=0\\\cos x\left( {2\sin x-1} \right)&=0\end{align}$ $ \displaystyle \cos x=0\,\,\,\,\,\,\,\,\,\,\,\,\,\sin x=\frac{1}{2}$ $ \displaystyle x=\left\{ {\frac{\pi }{2},\frac{{3\pi }}{2},\frac{\pi }{6},\frac{{5\pi }}{6}} \right\}$ |
$ \displaystyle \tan \left( {\frac{A}{2}} \right)\sin A=1-\cos A$, over the reals
$ \require{cancel} \displaystyle \begin{align}\left( {\frac{{1-\cos A}}{{\cancel{{\sin A}}}}} \right)\cancel{{\sin A}}&=1-\cos A\\1-\cos A&=1-\cos A\end{align}$ This would appear to be all real numbers, but we have to restrict the answers by the asymptotes of tan, which are $ \displaystyle \frac{\pi }{2}+\pi k$ for the parent function. Since we have $ \displaystyle \tan \left( {\frac{A}{2}} \right)$, the asymptotes are $ \pi +2\pi k$. So, the answer is $ \displaystyle \left\{ {A|A\ne \pi +2\pi k} \right\}$. Tricky! | $ \displaystyle 4\sin x\cos x=1$, interval $ \left[ {0,2\pi } \right)$
$ \displaystyle \begin{array}{c}2\left( {2\sin x\cos x} \right)=1\\2\left( {\sin \left( {2x} \right)} \right)=1\end{array}$ $ \displaystyle \sin \left( {2x} \right)=\frac{1}{2}$ $ \displaystyle \,2x=\frac{\pi }{6}+2\pi k\,\,\,\,\,\,\,\,\,\,\,\,2x=\frac{{5\pi }}{6}+2\pi k$ $ \displaystyle x=\frac{\pi }{{12}}+\pi k\,\,\,\,\,\,\,\,\,\,\,\,x=\frac{{5\pi }}{{12}}+\pi k$ In Unit Circle, this will be $ \displaystyle x=\left\{ {\frac{\pi }{{12}},\frac{{5\pi }}{{12}},\frac{{13\pi }}{{12}},\frac{{17\pi }}{{12}}} \right\}$. |
$ \displaystyle 1-{{\sin }^{2}}\theta -\cos \left( {2\theta } \right)-\frac{1}{2}=0$, over the reals
$ \displaystyle 1-{{\sin }^{2}}\theta -\left( {1-2{{{\sin }}^{2}}\theta } \right)-\frac{1}{2}=0$ $ \displaystyle {{\sin }^{2}}\theta =\frac{1}{2};\,\,\,\,\,\sin \theta =\pm \sqrt{{\frac{1}{2}}}=\pm \frac{1}{{\sqrt{2}}}=\pm \frac{{\sqrt{2}}}{2}$ $ \displaystyle \left\{ {\theta |\theta =\frac{\pi }{4}+\pi k,\,\,\,\,\frac{{3\pi }}{4}+\pi k} \right\}\text{,}\,\text{or even}$ $ \displaystyle \left\{ {\theta |\theta =\frac{\pi }{4}+\frac{\pi }{2}k} \right\}$ | Here’s one more where we have to be careful to not miss solutions; this is tricky! Note that, to factor, we turned $ \displaystyle \tan x$ into $ \displaystyle \cot x{{\tan }^{2}}x$: $ \displaystyle \tan \left( {2x} \right)\,-\cot x=0$, interval $ \left[ {0,2\pi } \right)$ $ \displaystyle \begin{align}\tan \left( {2x} \right)\,-\cot x&=0\\\frac{{2\tan x}}{{1-{{{\tan }}^{2}}x}}-\cot x&=0\\2\tan x-\cot x\left( {1-{{{\tan }}^{2}}x} \right)&=0\\2\cot x{{\tan }^{2}}x-\cot x\left( {1-{{{\tan }}^{2}}x} \right)&=0&\,\\\cot x\left( {3{{{\tan }}^{2}}x-1} \right)=0\\\cot x&=0\,\,\,\,\,\,\,\,\,\tan x=\pm \frac{1}{{\sqrt{3}}}\\x&=\left\{ {\frac{\pi }{2},\frac{{3\pi }}{2},\frac{\pi }{6},\frac{{5\pi }}{6},\frac{{7\pi }}{6},\frac{{11\pi }}{6}} \right\}\end{align}$ |
Trig Identity Summary and Mixed Identity Proofs
Now let’s put it all together. First, here is a table with all the identities we’ve talked about:
Reciprocal and Quotient Identities | $ \displaystyle \sin \theta =\frac{1}{{\csc \theta }}\,\,\,\,\,\,\,\,\,\,\,\csc \theta =\frac{1}{{\sin \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \theta =\frac{1}{{\sec \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\sec \theta =\frac{1}{{\cos \theta }}\,$ $ \displaystyle \tan \theta =\frac{1}{{\cot \theta }}=\frac{{\sin \theta }}{{\cos \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\cot \theta =\frac{1}{{\tan \theta }}=\frac{{\cos \theta }}{{\sin \theta }}$ |
Pythagorean Identities | $ \displaystyle {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\cot }^{2}}\theta +1={{\csc }^{2}}\theta $ |
Sum and Difference Identities | $ \begin{array}{l}\sin \left( {A+B} \right)=\sin A\cos B+\cos A\sin B\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \left( {A+B} \right)=\cos A\cos B-\sin A\sin B\\\sin \left( {A-B} \right)=\sin A\cos B-\cos A\sin B\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \left( {A-B} \right)=\cos A\cos B+\sin A\sin B\end{array}$ $ \displaystyle \tan \left( {A+B} \right)=\frac{{\tan A+\tan B}}{{1-\tan A\tan B}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\tan \left( {A-B} \right)=\frac{{\tan A-\tan B}}{{1+\tan A\tan B}}$
From these identities, you may be asked to be familiar with the Odd/Even Identities: $ \displaystyle \begin{array}{l}\text{EVEN: }\,\,\,\cos \left( {-x} \right)=\cos \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ODD:}\,\,\,\,\,\,\sin \left( {-x} \right)=-\sin \left( x \right)\,\,\,\,\,\,\,\tan \left( {-x} \right)=-\tan \left( x \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sec \left( {-x} \right)=\sec \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\csc \left( {-x} \right)=-\csc \left( x \right)\,\,\,\,\,\,\,\cot \left( {-x} \right)=-\cot \left( x \right)\end{array}$
…..and the Cofunction Identities in radians (trig function of an angle is equal to the value of the cofunction of the complement): $ \displaystyle \begin{align}\sin \left( {\frac{\pi }{2}-x} \right)&=\cos \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\csc \left( {\frac{\pi }{2}-x} \right)=\sec \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\tan \left( {\frac{\pi }{2}-x} \right)=\cot \left( x \right)\\\cos \left( {\frac{\pi }{2}-x} \right)&=\sin \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sec \left( {\frac{\pi }{2}-x} \right)=\csc \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cot \left( {\frac{\pi }{2}-x} \right)=\tan \left( x \right)\end{align}$ |
Double Angle Identities | $ \sin \left( {2A} \right)=2\sin A\cos A$ $ \begin{align}\cos \left( {2A} \right)&={{\cos }^{2}}A-{{\sin }^{2}}A\\&=1-2{{\sin }^{2}}A\\&=2{{\cos }^{2}}A-1\end{align}$ $ \displaystyle \tan \left( {2A} \right)=\frac{{2\tan A}}{{1-{{{\tan }}^{2}}A}}$ |
Half Angle Identities | $ \displaystyle \sin \left( {\frac{A}{2}} \right)=\pm \sqrt{{\frac{{1-\cos A}}{2}}}=\pm \sqrt{{\frac{1}{2}\left( {1-\cos A} \right)}};\,\cos \left( {\frac{A}{2}} \right)=\pm \sqrt{{\frac{{1+\cos A}}{2}}}=\pm \sqrt{{\frac{1}{2}\left( {1+\cos A} \right)}}$ $ \displaystyle \tan \left( {\frac{A}{2}} \right)=\frac{{\sin A}}{{1+\cos A}}=\frac{{1-\cos A}}{{\sin A}}$ Note: When solving, to get the correct sign when there’s a $ \pm $, check for the quadrant of the half angle, and see if that trig function is positive or negative. For example, for $ \displaystyle \cos \left( {\frac{A}{2}} \right)$, where $ A={{300}^{{}^\circ }}$, $ \displaystyle \frac{A}{2}=150{}^\circ $, which is in Quadrant 2, where cos is negative. Thus, use $ \displaystyle -\sqrt{{\frac{{1+\cos A}}{2}}}$. |
Here are a set of “hints” that might help you prove and solve trig identity problems:
- Start with the more complicated side. If you absolutely can’t get to the other side, go down both sides, see where the two sides are identical and then move up one of the sides. Some teachers will let you work down both sides until the two sides match up.
- Turn everything into sin and cos, for example if you have tan or reciprocal functions that you can simplify.
- Match trig functions (like tan) to what’s on the other side. For example, if you have a $ {{\tan }^{2}}$ on one side, and a $ \displaystyle \frac{{\sin }}{{\cos }}$ on the other, change the $ \displaystyle \frac{{\sin }}{{\cos }}$ to a tan.
- Look at the other side of the identity to see what direction to go on the more complicated side. For example, if there is one term on the right-hand side, strive for one term on the left.
- Use Pythagorean Identities when you see you can cancel something out (like a “1”) or you see a trig function that is squared that you can eliminate.
- Find common denominators if the number of terms doesn’t match on each side. For example, if you have two terms on the left-hand side and only one term on the right-hand side, find the common denominator and add the two terms on the left-hand side so they become one. If you have two terms on both sides, for example, you may want to leave them alone. You may also need to “break apart” terms when there is more than one term in the numerator (using the same denominator), for example, $ \displaystyle \frac{{x+2}}{x}=\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}$. It’s a good idea to simplify fractions (for example, using reciprocal identities) before finding common denominators and adding or subtracting fractions.
- Divide numerator and denominator by something that makes the term simplified, for example, if you have a difference of squares in the numerator, divide numerator and denominator by one of these factors.
- Cross out (simplify) anything you can earlier rather than later.
- For $ \cos \left( {2A} \right)$, to know which version of identity to use, check to see if there’s a “$ -1$” or a “$ +1$” on same side of the identity; you’ll probably want to cancel these out. For example, use $ 1-2{{\sin }^{2}}x$ if there’s a “$ -1$” following the $ \cos \left( {2A} \right)$ (then you’ll end up with $ 1-2{{\sin }^{2}}x-1=-2{{\sin }^{2}}x$), and use $ 2{{\cos }^{2}}x-1$ if there’s a “$ +1$” following the $ \cos \left( {2A} \right)$ (then you’ll end up with $ 2{{\cos }^{2}}x-1+1=2{{\cos }^{2}}x$). If there’s a “$ -\,\,{{\cos }^{2}}x$”, or a “$ +\,\,{{\sin }^{2}}x$” following the $ \cos \left( {2A} \right)$, you may want to use $ {{\cos }^{2}}x-{{\sin }^{2}}x$, to be able to simplify.
- Watch for difference of squares, such as $ \left( {\cos x-1} \right)\left( {\cos x+1} \right)={{\cos }^{2}}x-1$.
- With quadratics, try to factor if you can. For solving, get everything to one side before factoring. Example of trig identity and quadratics factoring: $ \displaystyle \cos \left( {2x} \right)+\cos \left( x \right)=2{{\cos }^{2}}\left( x \right)-1+\cos \left( x \right)=\left( {2\cos \left( x \right)-1} \right)\left( {\cos \left( x \right)+1} \right)$.
- Multiply by conjugates, usually in denominators, but sometimes in numerators, to get difference of squares. (Multiply by 1, with the conjugate in both the numerator and denominator).
- Factor out Greatest Common Factors (GCFs) if can.
- When solving, simplify with identities first, if you can.
- When solving, you can square each side, but don’t divide both sides by factors with variables, since you might be missing out on solutions. If you need to cross-multiply, or multiply both sides by what’s in a denominator (even when one side equals 0), make sure you’re not missing solutions. (It might be a good idea to see how many solutions there are in a graphing calculator if you can). And always check for extraneous solutions when squaring or there are denominators: solutions must work in the original equations, and denominators can’t be 0.
- When solving, if you get answers for any trig function that has asymptotes (like tan), check for extraneous solutions (solutions that would be asymptotes).
Here are some Mixed Identity Proof problems:
Trig Identity Proofs | Hints |
$ \displaystyle \frac{{{{{\cos }}^{4}}\theta -{{{\sin }}^{4}}\theta }}{{{{{\left( {\cos \theta +\sin \theta } \right)}}^{2}}}}=\frac{{\cos 2\theta }}{{1+\sin 2\theta }}$
$ \displaystyle \begin{align}\frac{{\left( {{{{\cos }}^{2}}\theta -{{{\sin }}^{2}}\theta } \right)\left( {{{{\cos }}^{2}}\theta +{{{\sin }}^{2}}\theta } \right)}}{{{{{\cos }}^{2}}\theta +2\cos \theta \sin \theta +{{{\sin }}^{2}}\theta }}&=\\\frac{{\left( {{{{\cos }}^{2}}\theta -{{{\sin }}^{2}}\theta } \right)\left( 1 \right)}}{{2\cos \theta \sin \theta +1}}&=\frac{{\cos 2\theta }}{{1+\sin 2\theta }}\,\,\,\,\,\,\,\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{1}{{1-\sin \theta }}=\sec \theta \tan \theta +{{\sec }^{2}}\theta \,\,$
$ \displaystyle \begin{align}\left( {\frac{1}{{1-\sin \theta }}} \right)\left( {\frac{{1+\sin \theta }}{{1+\sin \theta }}} \right)&=\\\frac{{1+\sin \theta }}{{1-{{{\sin }}^{2}}\theta }}&=\\\frac{{1+\sin \theta }}{{{{{\cos }}^{2}}\theta }}&=\\\frac{1}{{{{{\cos }}^{2}}\theta }}+\frac{{\sin \theta }}{{{{{\cos }}^{2}}\theta }}&=\\ {{\sec }^{2}}\theta +\left( {\frac{1}{{\cos \theta }}} \right)\tan \theta &=\sec \theta \tan \theta +{{\sec }^{2}}\theta \,\,\,\,\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{1+\sin \left( {2y} \right)}}{{\cos \left( {2y} \right)}}=\frac{{\cot y+1}}{{\cot y-1}}$
$ \displaystyle \begin{align}&=\frac{{\left( {\displaystyle \frac{{\cos y}}{{\sin y}}+1} \right)}}{{\left( {\displaystyle \frac{{\cos y}}{{\sin y}}-1} \right)}}\\&=\frac{{\left( {\displaystyle \frac{{\cos y+\sin y}}{{\sin y}}} \right)}}{{\left( {\displaystyle \frac{{\cos y-\sin y}}{{\sin y}}} \right)}}\\&=\displaystyle \frac{{\cos y+\sin y}}{{\cos y-\sin y}}\\&=\frac{{\cos y+\sin y}}{{\cos y-\sin y}}\left( {\displaystyle \frac{{\cos y+\sin y}}{{\cos y+\sin y}}} \right)\\\displaystyle \frac{{1+\sin \left( {2y} \right)}}{{\cos \left( {2y} \right)}}&=\displaystyle \frac{{{{{\cos }}^{2}}y+2\sin y\cos y+{{{\sin }}^{2}}y}}{{{{{\cos }}^{2}}y-{{{\sin }}^{2}}y}}\,\,\,\,\,\,\,\,\,\surd \end{align}$ |
|
Here are more Mixed Identity Proofs:
Trig Identity Proofs | Hints |
$ \displaystyle \frac{{\cos 2x+\cos x-20}}{{\sin 2x-6\sin x}}=\cot x+\frac{7}{2}\csc x$
$ \require{cancel} \displaystyle \begin{align}\frac{{2{{{\cos }}^{2}}x-1+\cos x-20}}{{2\cos x\sin x-6\sin x}}&=\\\frac{{2\cos {{x}^{2}}+\cos x-21}}{{2\sin x\left( {\cos x-3} \right)}}&=\\\frac{{\left( {2\cos x+7} \right)\cancel{{\left( {\cos x-3} \right)}}}}{{2\sin x\cancel{{\left( {\cos x-3} \right)}}}}&=\\\frac{{\cancel{2}\cos x}}{{\cancel{2}\sin x}}+\frac{7}{{2\sin x}}&=\cot x+\frac{7}{2}\csc x\,\,\,\,\,\,\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{\tan A}}{{\sec A+1}}+\frac{{\sec A+1}}{{\tan A}}=\frac{2}{{\sin A}}$
$ \begin{align}\frac{{\left( {\tan A} \right)\left( {\tan A} \right)}}{{\left( {\sec A+1} \right)\left( {\tan A} \right)}}+\frac{{\left( {\sec A+1} \right)\left( {\sec A+1} \right)}}{{\left( {\sec A+1} \right)\left( {\tan A} \right)}}&=\\\frac{{{{{\tan }}^{2}}A+{{{\sec }}^{2}}A+2\sec A+1}}{{\left( {\sec A+1} \right)\left( {\tan A} \right)}}&=\\\frac{{{{{\sec }}^{2}}A+{{{\sec }}^{2}}A+2\sec A}}{{\left( {\sec A+1} \right)\left( {\tan A} \right)}}&=\\\frac{{2{{{\sec }}^{2}}A+2\sec A}}{{\left( {\sec A+1} \right)\left( {\tan A} \right)}}&=\\\frac{{2\sec A\cancel{{\left( {\sec A+1} \right)}}}}{{\cancel{{\left( {\sec A+1} \right)}}\left( {\tan A} \right)}}&=\\\frac{{2\left( {\displaystyle \frac{1}{{\cos A}}} \right)}}{{\displaystyle \frac{{\sin A}}{{\cos A}}}}=\frac{2}{{\sin A}}\,\,\,\,\,\,\,\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{1-{{{\tan }}^{2}}x}}{{{{{\cos }}^{2}}x-{{{\sin }}^{2}}x}}={{\sec }^{2}}x$
$ \require{cancel} \displaystyle \begin{align}\frac{{1-\displaystyle \frac{{{{{\sin }}^{2}}x}}{{{{{\cos }}^{2}}x}}}}{{{{{\cos }}^{2}}x-{{{\sin }}^{2}}x}}&=\\\frac{{\displaystyle \frac{{{{{\cos }}^{2}}x}}{{{{{\cos }}^{2}}x}}-\frac{{{{{\sin }}^{2}}x}}{{{{{\cos }}^{2}}x}}}}{{{{{\cos }}^{2}}x-{{{\sin }}^{2}}x}}&=\\\frac{{\displaystyle \frac{{{{{\cos }}^{2}}x-{{{\sin }}^{2}}x}}{{{{{\cos }}^{2}}x}}}}{{{{{\cos }}^{2}}x-{{{\sin }}^{2}}x}}&=\\\frac{{\cancel{{{{{\cos }}^{2}}x-{{{\sin }}^{2}}x}}}}{{{{{\cos }}^{2}}x}}\cdot \displaystyle \frac{1}{{\cancel{{{{{\cos }}^{2}}x-{{{\sin }}^{2}}x}}}}&=\\\frac{1}{{{{{\cos }}^{2}}x}}&={{\sec }^{2}}x\,\,\,\,\,\,\,\surd \end{align}$ |
|
$ \displaystyle \frac{{1+{{{\tan }}^{2}}\theta }}{{1-{{{\tan }}^{2}}\theta }}=\sec \left( {2\theta } \right)$
$ \displaystyle \begin{align}\frac{{{{{\sec }}^{2}}\theta }}{{1-{{{\tan }}^{2}}\theta }}&=\\\frac{{\displaystyle \displaystyle \displaystyle \frac{1}{{{{{\cos }}^{2}}\theta }}}}{{\displaystyle \frac{{{{{\cos }}^{2}}\theta }}{{{{{\cos }}^{2}}\theta }}-\displaystyle \frac{{{{{\sin }}^{2}}\theta }}{{{{{\cos }}^{2}}\theta }}}}&=\\\displaystyle \frac{{\displaystyle \displaystyle \frac{1}{{{{{\cos }}^{2}}\theta }}}}{{\displaystyle \frac{{{{{\cos }}^{2}}\theta -{{{\sin }}^{2}}\theta }}{{{{{\cos }}^{2}}\theta }}}}&=\\\displaystyle \frac{1}{{{{{\cos }}^{2}}\theta -{{{\sin }}^{2}}\theta }}&=\\\displaystyle \frac{1}{{\cos \left( {2\theta } \right)}}&=\sec \left( {2\theta } \right)\,\,\,\,\,\,\surd \end{align}$ |
|
Understand these problems, and practice, practice, practice!
On to Law of Sines and Cosines, and Areas of Triangles – you’re ready!